BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 11906950)

  • 1. Characterization of the human fMLP receptor in neutrophils and in Xenopus oocytes.
    Wittmann S; Fröhlich D; Daniels S
    Br J Pharmacol; 2002 Mar; 135(6):1375-82. PubMed ID: 11906950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaesthetic sensitivity of fMLP-induced cell signalling in Xenopus oocytes.
    Wittmann S; Fröhlich D; Mietens A; Daniels S
    Int Immunopharmacol; 2006 Jan; 6(1):61-70. PubMed ID: 16332514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high potency nonformylated peptide agonist for the phagocyte N-formylpeptide chemotactic receptor.
    Gao JL; Becker EL; Freer RJ; Muthukumaraswamy N; Murphy PM
    J Exp Med; 1994 Dec; 180(6):2191-7. PubMed ID: 7964494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5-Hydroxy-7-methoxyflavone inhibits N-formyl-L-methionyl-L-leucyl-L-phenylalanine-induced superoxide anion production by specific modulate membrane localization of Tec with a PI3K independent mechanism in human neutrophils.
    Liao HR; Chen JJ; Chien YH; Lin SZ; Lin S; Tseng CP
    Biochem Pharmacol; 2012 Jul; 84(2):182-91. PubMed ID: 22484311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of fMet-Leu-Phe receptor-mediated Ca2+ influx across the plasma membrane of human neutrophils.
    Andersson T; Dahlgren C; Pozzan T; Stendahl O; Lew PD
    Mol Pharmacol; 1986 Nov; 30(5):437-43. PubMed ID: 2430168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemotactic peptide activation of human neutrophils and HL-60 cells. Pertussis toxin reveals correlation between inositol trisphosphate generation, calcium ion transients, and cellular activation.
    Krause KH; Schlegel W; Wollheim CB; Andersson T; Waldvogel FA; Lew PD
    J Clin Invest; 1985 Oct; 76(4):1348-54. PubMed ID: 3877077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the heterogeneous membrane potential response of neutrophils to N-formyl-methionyl-leucyl-phenylalanine (FMLP) by leukotriene B4: evidence for cell recruitment.
    Fletcher MP
    J Immunol; 1986 Jun; 136(11):4213-9. PubMed ID: 3009618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of a voltage-dependent chloride current in human neutrophils by phorbol 12-myristate 13-acetate and formyl-methionyl-leucyl-phenylalanine. The role of protein kinase C.
    Schumann MA; Raffin TA
    J Biol Chem; 1994 Jan; 269(4):2389-98. PubMed ID: 8300564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interleukin-18 primes the oxidative burst of neutrophils in response to formyl-peptides: role of cytochrome b558 translocation and N-formyl peptide receptor endocytosis.
    Elbim C; Guichard C; Dang PM; Fay M; Pedruzzi E; Demur H; Pouzet C; El Benna J; Gougerot-Pocidalo MA
    Clin Diagn Lab Immunol; 2005 Mar; 12(3):436-46. PubMed ID: 15753257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signal transduction in human alveolar macrophages: diminished chemotactic response to FMLP correlates with a diminished density of Gi proteins and FMLP receptors.
    Beaty CD; Martin TR; Wilson CB
    Am J Respir Cell Mol Biol; 1991 Jul; 5(1):87-92. PubMed ID: 1908689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human neutrophil Fc gamma RIIIB and formyl peptide receptors are functionally linked during formyl-methionyl-leucyl-phenylalanine-induced chemotaxis.
    Kew RR; Grimaldi CM; Furie MB; Fleit HB
    J Immunol; 1992 Aug; 149(3):989-97. PubMed ID: 1321856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct effects of N-ethylmaleimide on formyl peptide- and cyclopiazonic acid-induced Ca2+ signals through thiol modification in neutrophils.
    Hsu MF; Sun SP; Chen YS; Tsai CR; Huang LJ; Tsao LT; Kuo SC; Wang JP
    Biochem Pharmacol; 2005 Nov; 70(9):1320-9. PubMed ID: 16143313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal adaptation of neutrophil oxidative responsiveness to n-formyl-methionyl-leucyl-phenylalanine. Acceleration by granulocyte-macrophage colony stimulating factor.
    English D; Broxmeyer HE; Gabig TG; Akard LP; Williams DE; Hoffman R
    J Immunol; 1988 Oct; 141(7):2400-6. PubMed ID: 3049807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of type II adenylyl cyclase by chemoattractant formyl peptide and C5a receptors.
    Tsu RC; Allen RA; Wong YH
    Mol Pharmacol; 1995 Apr; 47(4):835-41. PubMed ID: 7723745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. W-7 primes or inhibits the fMLP-stimulated respiratory burst in human neutrophil by concentration-dependent dual expression of the formyl peptide receptors on cell surface.
    Hu TH; Bei L; Qian ZM; Shen X
    Biochim Biophys Acta; 2000 Apr; 1496(2-3):243-51. PubMed ID: 10771092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal transduction in N-formyl-methionyl-leucyl-phenylalanine and concanavalin A stimulated human neutrophils: superoxide production without a rise in intracellular free calcium.
    Liang SL; Woodlock TJ; Whitin JC; Lichtman MA; Segel GB
    J Cell Physiol; 1990 Nov; 145(2):295-302. PubMed ID: 2174064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complementation of formyl peptide receptor-mediated signal transduction in Xenopus laevis oocytes.
    Schultz P; Stannek P; Voigt M; Jakobs KH; Gierschik P
    Biochem J; 1992 May; 284 ( Pt 1)(Pt 1):207-12. PubMed ID: 1318022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (2R,3R)-2-(3',4'-dihydroxybenzyl)-3-(3'',4''-dimethoxybenzyl)butyrolactone suppresses fMLP-induced superoxide production by inhibiting fMLP-receptor binding in human neutrophils.
    Huang YJ; Chen IS; Tseng CP; Day YJ; Lin YC; Liao CH
    Biochem Pharmacol; 2008 Feb; 75(3):688-97. PubMed ID: 17988652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional reconstitution of fMet-Leu-Phe receptor in Xenopus laevis oocytes.
    Coats WD; Navarro J
    J Biol Chem; 1990 Apr; 265(11):5964-6. PubMed ID: 2156834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fixation traps formyl peptide receptors in high and low affinity forms that can be regulated by GTP[S] in the absence of ligand.
    Domalewski MD; Guyer DA; Freer RJ; Muthukumaraswamy N; Sklar LA
    J Recept Signal Transduct Res; 1996; 16(1-2):59-75. PubMed ID: 8771531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.