BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11907141)

  • 21. Role of photoreceptor-specific retinol dehydrogenase in the retinoid cycle in vivo.
    Maeda A; Maeda T; Imanishi Y; Kuksa V; Alekseev A; Bronson JD; Zhang H; Zhu L; Sun W; Saperstein DA; Rieke F; Baehr W; Palczewski K
    J Biol Chem; 2005 May; 280(19):18822-32. PubMed ID: 15755727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The identification of a 9-cis retinol dehydrogenase in the mouse embryo reveals a pathway for synthesis of 9-cis retinoic acid.
    Romert A; Tuvendal P; Simon A; Dencker L; Eriksson U
    Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4404-9. PubMed ID: 9539749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redundant and unique roles of retinol dehydrogenases in the mouse retina.
    Maeda A; Maeda T; Sun W; Zhang H; Baehr W; Palczewski K
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19565-70. PubMed ID: 18048336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions of retinoid binding proteins and enzymes in retinoid metabolism.
    Napoli JL
    Biochim Biophys Acta; 1999 Sep; 1440(2-3):139-62. PubMed ID: 10521699
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ontogeny of rdh9 (Crad3) expression: ablation causes changes in retinoid and steroid metabolizing enzymes, but RXR and androgen signaling seem normal.
    Hu P; Zhang M; Napoli JL
    Biochim Biophys Acta; 2007 Apr; 1770(4):694-705. PubMed ID: 17270348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retinol dehydrogenase 8 and ATP-binding cassette transporter 4 modulate dark adaptation of M-cones in mammalian retina.
    Kolesnikov AV; Maeda A; Tang PH; Imanishi Y; Palczewski K; Kefalov VJ
    J Physiol; 2015 Nov; 593(22):4923-41. PubMed ID: 26350353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic dissection of retinoid dehydrogenases.
    Duester G
    Chem Biol Interact; 2001 Jan; 130-132(1-3):469-80. PubMed ID: 11306068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retinoid processing proteins in the ocular ciliary epithelium.
    Salvador-Silva M; Ghosh S; Bertazolli-Filho R; Boatright JH; Nickerson JM; Garwin GG; Saari JC; Coca-Prados M
    Mol Vis; 2005 May; 11():356-65. PubMed ID: 15928609
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visual cycle in the mammalian eye. Retinoid-binding proteins and the distribution of 11-cis retinoids.
    Bridges CD; Alvarez RA; Fong SL; Gonzalez-Fernandez F; Lam DM; Liou GI
    Vision Res; 1984; 24(11):1581-94. PubMed ID: 6543481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of the role of the retinal G protein-coupled receptor (RGR) in the vertebrate retina in vivo.
    Maeda T; Van Hooser JP; Driessen CA; Filipek S; Janssen JJ; Palczewski K
    J Neurochem; 2003 May; 85(4):944-56. PubMed ID: 12716426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acute radiolabeling of retinoids in eye tissues of normal and rpe65-deficient mice.
    Qtaishat NM; Redmond TM; Pepperberg DR
    Invest Ophthalmol Vis Sci; 2003 Apr; 44(4):1435-46. PubMed ID: 12657577
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rod and cone visual cycle consequences of a null mutation in the 11-cis-retinol dehydrogenase gene in man.
    Cideciyan AV; Haeseleer F; Fariss RN; Aleman TS; Jang GF; Verlinde CLMJ; Marmor MF; Jacobson SG; Palczewski K
    Vis Neurosci; 2000; 17(5):667-678. PubMed ID: 11153648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aberrant metabolites in mouse models of congenital blinding diseases: formation and storage of retinyl esters.
    Maeda A; Maeda T; Imanishi Y; Golczak M; Moise AR; Palczewski K
    Biochemistry; 2006 Apr; 45(13):4210-9. PubMed ID: 16566595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Retinol dehydrogenase (RDH12) protects photoreceptors from light-induced degeneration in mice.
    Maeda A; Maeda T; Imanishi Y; Sun W; Jastrzebska B; Hatala DA; Winkens HJ; Hofmann KP; Janssen JJ; Baehr W; Driessen CA; Palczewski K
    J Biol Chem; 2006 Dec; 281(49):37697-704. PubMed ID: 17032653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular and metabolic retinoid pathways in the human ocular surface.
    Nezzar H; Chiambaretta F; Marceau G; Blanchon L; Faye B; Dechelotte P; Rigal D; Sapin V
    Mol Vis; 2007 Sep; 13():1641-50. PubMed ID: 17893666
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 17beta-Hydroxysteroid dehydrogenase type 9 and other short-chain dehydrogenases/reductases that catalyze retinoid, 17beta- and 3alpha-hydroxysteroid metabolism.
    Napoli JL
    Mol Cell Endocrinol; 2001 Jan; 171(1-2):103-9. PubMed ID: 11165018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retinoids and the alcohol dehydrogenase gene family.
    Duester G
    EXS; 1994; 71():279-90. PubMed ID: 8032159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the visual cycle in cellular retinol-binding protein type I (CRBPI) knockout mice.
    Saari JC; Nawrot M; Garwin GG; Kennedy MJ; Hurley JB; Ghyselinck NB; Chambon P
    Invest Ophthalmol Vis Sci; 2002 Jun; 43(6):1730-5. PubMed ID: 12036972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoreceptor recovery in retinoid-deprived rats after vitamin A replenishment.
    Katz ML; Chen DM; Stientjes HJ; Stark WS
    Exp Eye Res; 1993 Jun; 56(6):671-82. PubMed ID: 8595809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activity of human 11-cis-retinol dehydrogenase (Rdh5) with steroids and retinoids and expression of its mRNA in extra-ocular human tissue.
    Wang J; Chai X; Eriksson U; Napoli JL
    Biochem J; 1999 Feb; 338 ( Pt 1)(Pt 1):23-7. PubMed ID: 9931293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.