These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 11907258)
61. The class I PITP giotto is required for Drosophila cytokinesis. Giansanti MG; Bonaccorsi S; Kurek R; Farkas RM; Dimitri P; Fuller MT; Gatti M Curr Biol; 2006 Jan; 16(2):195-201. PubMed ID: 16431372 [TBL] [Abstract][Full Text] [Related]
62. An essential role for the phosphatidylinositol transfer protein in the scission of coatomer-coated vesicles from the trans-Golgi network. Simon JP; Morimoto T; Bankaitis VA; Gottlieb TA; Ivanov IE; Adesnik M; Sabatini DD Proc Natl Acad Sci U S A; 1998 Sep; 95(19):11181-6. PubMed ID: 9736710 [TBL] [Abstract][Full Text] [Related]
64. Comparison of cysteine string protein (Csp) and mutant alpha-SNAP overexpression reveals a role for csp in late steps of membrane fusion in dense-core granule exocytosis in adrenal chromaffin cells. Graham ME; Burgoyne RD J Neurosci; 2000 Feb; 20(4):1281-9. PubMed ID: 10662817 [TBL] [Abstract][Full Text] [Related]
65. Localization of cellubrevin-related peptide, endobrevin, in the early endosome in pancreatic beta cells and its physiological function in exo-endocytosis of secretory granules. Nagamatsu S; Nakamichi Y; Watanabe T; Matsushima S; Yamaguchi S; Ni J; Itagaki E; Ishida H J Cell Sci; 2001 Jan; 114(Pt 1):219-227. PubMed ID: 11112705 [TBL] [Abstract][Full Text] [Related]
66. Involvement of hrs binding protein in IgE receptor-triggered exocytosis in RBL-2H3 mast cells. Murai S; Kitamura N Biochem Biophys Res Commun; 2000 Nov; 277(3):752-6. PubMed ID: 11062024 [TBL] [Abstract][Full Text] [Related]
67. Analysis of SCAMP1 function in secretory vesicle exocytosis by means of gene targeting in mice. Fernández-Chacón R; Alvarez de Toledo G; Hammer RE; Südhof TC J Biol Chem; 1999 Nov; 274(46):32551-4. PubMed ID: 10551807 [TBL] [Abstract][Full Text] [Related]
68. Phosphatidylinositol transfer protein (PITPalpha) stimulates in vitro intra-Golgi transport. Paul KS; Bogan AA; Waters MG FEBS Lett; 1998 Jul; 431(1):91-6. PubMed ID: 9684872 [TBL] [Abstract][Full Text] [Related]
69. The Sec14-superfamily and the regulatory interface between phospholipid metabolism and membrane trafficking. Mousley CJ; Tyeryar KR; Vincent-Pope P; Bankaitis VA Biochim Biophys Acta; 2007 Jun; 1771(6):727-36. PubMed ID: 17512778 [TBL] [Abstract][Full Text] [Related]
70. Evidence of a role for Munc18-2 and microtubules in mast cell granule exocytosis. Martin-Verdeaux S; Pombo I; Iannascoli B; Roa M; Varin-Blank N; Rivera J; Blank U J Cell Sci; 2003 Jan; 116(Pt 2):325-34. PubMed ID: 12482918 [TBL] [Abstract][Full Text] [Related]
71. Dynamics of lipid transfer by phosphatidylinositol transfer proteins in cells. Shadan S; Holic R; Carvou N; Ee P; Li M; Murray-Rust J; Cockcroft S Traffic; 2008 Sep; 9(10):1743-56. PubMed ID: 18636990 [TBL] [Abstract][Full Text] [Related]
72. Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle. Grabon A; Orłowski A; Tripathi A; Vuorio J; Javanainen M; Róg T; Lönnfors M; McDermott MI; Siebert G; Somerharju P; Vattulainen I; Bankaitis VA J Biol Chem; 2017 Sep; 292(35):14438-14455. PubMed ID: 28718450 [TBL] [Abstract][Full Text] [Related]
73. Mechanism of interaction of PITPalpha with membranes: conformational changes in the C-terminus associated with membrane binding. Tremblay JM; Unruh JR; Johnson CK; Yarbrough LR Arch Biochem Biophys; 2005 Dec; 444(2):112-20. PubMed ID: 16309627 [TBL] [Abstract][Full Text] [Related]
74. Both isoforms of mammalian phosphatidylinositol transfer protein are capable of binding and transporting sphingomyelin. Li H; Tremblay JM; Yarbrough LR; Helmkamp GM Biochim Biophys Acta; 2002 Jan; 1580(1):67-76. PubMed ID: 11923101 [TBL] [Abstract][Full Text] [Related]
75. Hrs and hbp: possible regulators of endocytosis and exocytosis. Komada M; Kitamura N Biochem Biophys Res Commun; 2001 Mar; 281(5):1065-9. PubMed ID: 11243842 [TBL] [Abstract][Full Text] [Related]
76. A Golgi Lipid Signaling Pathway Controls Apical Golgi Distribution and Cell Polarity during Neurogenesis. Xie Z; Hur SK; Zhao L; Abrams CS; Bankaitis VA Dev Cell; 2018 Mar; 44(6):725-740.e4. PubMed ID: 29587143 [TBL] [Abstract][Full Text] [Related]
77. Soluble NSF attachment protein receptors (SNAREs) in RBL-2H3 mast cells: functional role of syntaxin 4 in exocytosis and identification of a vesicle-associated membrane protein 8-containing secretory compartment. Paumet F; Le Mao J; Martin S; Galli T; David B; Blank U; Roa M J Immunol; 2000 Jun; 164(11):5850-7. PubMed ID: 10820264 [TBL] [Abstract][Full Text] [Related]
78. Exposure of phosphatidylinositol transfer proteins to sphingomyelin-cholesterol membranes suggests transient but productive interactions with raft-like, liquid-ordered domains. Miller EC; Helmkamp GM Biochemistry; 2003 Nov; 42(45):13250-9. PubMed ID: 14609336 [TBL] [Abstract][Full Text] [Related]
79. A role for phosphatidylinositol transfer protein in secretory vesicle formation. Ohashi M; Jan de Vries K; Frank R; Snoek G; Bankaitis V; Wirtz K; Huttner WB Nature; 1995 Oct; 377(6549):544-7. PubMed ID: 7566155 [TBL] [Abstract][Full Text] [Related]
80. Devising powerful genetics, biochemical and structural tools in the functional analysis of phosphatidylinositol transfer proteins (PITPs) across diverse species. Davison JM; Bankaitis VA; Ghosh R Methods Cell Biol; 2012; 108():249-302. PubMed ID: 22325607 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]