BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11907380)

  • 1. Epstein-barr virus can infect B-chronic lymphocytic leukemia cells but it does not orchestrate the cell cycle regulatory proteins.
    Maeda A; Bandobashi K; Nagy N; Teramoto N; Gogolák P; Pokrovskaja K; Székely L; Björkholm M; Klein G; Klein E
    J Hum Virol; 2001; 4(5):227-37. PubMed ID: 11907380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell cycle regulatory proteins and apoptosis in B-cell chronic lymphocytic leukemia.
    Wolowiec D; Ciszak L; Kosmaczewska A; Bocko D; Teodorowska R; Frydecka I; Kuliczkowski K
    Haematologica; 2001 Dec; 86(12):1296-304. PubMed ID: 11726322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epstein-Barr virus-infected B-chronic lymphocyte leukemia cells express the virally encoded nuclear proteins but they do not enter the cell cycle.
    Teramoto N; Gogolák P; Nagy N; Maeda A; Kvarnung K; Björkholm T; Klein E
    J Hum Virol; 2000; 3(3):125-36. PubMed ID: 10881992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell cycle progression of chronic lymphocytic leukemia cells is controlled by cyclin D2, cyclin D3, cyclin-dependent kinase (cdk) 4 and the cdk inhibitor p27.
    Decker T; Schneller F; Hipp S; Miething C; Jahn T; Duyster J; Peschel C
    Leukemia; 2002 Mar; 16(3):327-34. PubMed ID: 11896535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latent membrane protein 1 of Epstein-Barr virus plays an important role in the serum starvation resistance of Epstein-Barr virus-immortalized B lymphocytes.
    Park CH; Kim HR; Kim J; Jang SH; Lee KY; Chung GH; Jang YS
    J Cell Biochem; 2004 Mar; 91(4):777-85. PubMed ID: 14991769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epstein-Barr virus exploits the normal cell pathway to regulate Rb activity during the immortalisation of primary B-cells.
    Cannell EJ; Farrell PJ; Sinclair AJ
    Oncogene; 1996 Oct; 13(7):1413-21. PubMed ID: 8875979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotype-related differences in the expression of D-type cyclins in human B cell-derived lines.
    Pokrovskaja K; Ehlin-Henriksson B; Bartkova J; Bartek J; Scuderi R; Szekely L; Wiman KG; Klein G
    Cell Growth Differ; 1996 Dec; 7(12):1723-32. PubMed ID: 8959341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Latent membrane protein-1 induces cyclin D2 expression, pRb hyperphosphorylation, and loss of TGF-beta 1-mediated growth inhibition in EBV-positive B cells.
    Arvanitakis L; Yaseen N; Sharma S
    J Immunol; 1995 Aug; 155(3):1047-56. PubMed ID: 7636179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resting B-cells, EBV-infected B-blasts and established lymphoblastoid cell lines differ in their Rb, p53 and EBNA-5 expression patterns.
    Szekely L; Pokrovskaja K; Jiang WQ; Selivanova G; Löwbeer M; Ringertz N; Wiman KG; Klein G
    Oncogene; 1995 May; 10(9):1869-74. PubMed ID: 7753563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of c-myc regulation in Zta-mediated induction of the cyclin-dependent kinase inhibitors p21 and p27 and cell growth arrest.
    Rodriguez A; Jung EJ; Yin Q; Cayrol C; Flemington EK
    Virology; 2001 Jun; 284(2):159-69. PubMed ID: 11384216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epstein-Barr virus EBNA3C can disrupt multiple cell cycle checkpoints and induce nuclear division divorced from cytokinesis.
    Parker GA; Touitou R; Allday MJ
    Oncogene; 2000 Feb; 19(5):700-9. PubMed ID: 10698515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclin D3 and c-MYC control glucocorticoid-induced cell cycle arrest but not apoptosis in lymphoblastic leukemia cells.
    Ausserlechner MJ; Obexer P; Böck G; Geley S; Kofler R
    Cell Death Differ; 2004 Feb; 11(2):165-74. PubMed ID: 14576768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct and indirect regulation of cytokine and cell cycle proteins by EBNA-2 during Epstein-Barr virus infection.
    Spender LC; Cornish GH; Rowland B; Kempkes B; Farrell PJ
    J Virol; 2001 Apr; 75(8):3537-46. PubMed ID: 11264343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infection of leukaemic B lymphocytes by Epstein Barr virus.
    Doyle MG; Catovsky D; Crawford DH
    Leukemia; 1993 Nov; 7(11):1858-64. PubMed ID: 8231253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of latent membrane protein expression in in vitro Epstein-Barr virus-infected leukaemic B lymphocytes by interleukin 4 and antibodies to CD40.
    Crawford DH; Thomas JA; Gregory CD; Catovsky D; Chaggar K
    Leukemia; 1995 May; 9(5):747-53. PubMed ID: 7539512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The normal cell cycle activation program is exploited during the infection of quiescent B lymphocytes by Epstein-Barr virus.
    Hollyoake M; Stühler A; Farrell P; Gordon J; Sinclair A
    Cancer Res; 1995 Nov; 55(21):4784-7. PubMed ID: 7585505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restricted expression of EBV encoded proteins in in vitro infected CLL cells.
    Klein E; Nagy N
    Semin Cancer Biol; 2010 Dec; 20(6):410-5. PubMed ID: 21034831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Molecular pathological characteristics of human B-cell lymphomas induced by Epstein-Barr virus].
    Gan RL; Yin ZH; Liu TF; Dong BH; Zhou JG; Yao KT
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Oct; 35(10):925-9. PubMed ID: 14515211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and spread in nude mice of Epstein-Barr virus transformed B-cells from a chronic lymphocytic leukemia patient.
    Lee CL; Uniyal S; Fernandez LA; Lee SH; Ghose T
    Cancer Res; 1986 May; 46(5):2497-501. PubMed ID: 3008990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of transcription by the Epstein-Barr virus nuclear antigen EBNA 2.
    Palermo RD; Webb HM; Gunnell A; West MJ
    Biochem Soc Trans; 2008 Aug; 36(Pt 4):625-8. PubMed ID: 18631129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.