BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 11907567)

  • 1. Biochemistry: biosynthesis of an organofluorine molecule.
    O'Hagan D; Schaffrath C; Cobb SL; Hamilton JT; Murphy CD
    Nature; 2002 Mar; 416(6878):279. PubMed ID: 11907567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An enzymatic Finkelstein reaction: fluorinase catalyses direct halogen exchange.
    Lowe PT; Cobb SL; O'Hagan D
    Org Biomol Chem; 2019 Aug; 17(32):7493-7496. PubMed ID: 31364664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by genome mining.
    Deng H; Ma L; Bandaranayaka N; Qin Z; Mann G; Kyeremeh K; Yu Y; Shepherd T; Naismith JH; O'Hagan D
    Chembiochem; 2014 Feb; 15(3):364-8. PubMed ID: 24449539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorometabolite biosynthesis and the fluorinase from Streptomyces cattleya.
    Deng H; O'Hagan D; Schaffrath C
    Nat Prod Rep; 2004 Dec; 21(6):773-84. PubMed ID: 15565254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic fluorination in Streptomyces cattleya takes place with an inversion of configuration consistent with an SN2 reaction mechanism.
    Cadicamo CD; Courtieu J; Deng H; Meddour A; O'Hagan D
    Chembiochem; 2004 May; 5(5):685-90. PubMed ID: 15122641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rare fluorinated natural products and biotechnological prospects for fluorine enzymology.
    Chan KK; O'Hagan D
    Methods Enzymol; 2012; 516():219-35. PubMed ID: 23034231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fluorinase from Streptomyces cattleya is also a chlorinase.
    Deng H; Cobb SL; McEwan AR; McGlinchey RP; Naismith JH; O'Hagan D; Robinson DA; Spencer JB
    Angew Chem Int Ed Engl; 2006 Jan; 45(5):759-62. PubMed ID: 16370017
    [No Abstract]   [Full Text] [Related]  

  • 8. Assay for the enantiomeric analysis of [2H1]-fluoroacetic acid: insight into the stereochemical course of fluorination during fluorometabolite biosynthesis in streptomyces cattleya.
    O'Hagan D; Goss RJ; Meddour A; Courtieu J
    J Am Chem Soc; 2003 Jan; 125(2):379-87. PubMed ID: 12517149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of 5-fluoro-5-deoxy-D-ribose-1-phosphate as an intermediate in fluorometabolite biosynthesis in Streptomyces cattleya.
    Cobb SL; Deng H; Hamilton JT; McGlinchey RP; O'Hagan D
    Chem Commun (Camb); 2004 Mar; (5):592-3. PubMed ID: 14973623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Engineered E. coli Strain for Direct in Vivo Fluorination.
    Markakis K; Lowe PT; Davison-Gates L; O'Hagan D; Rosser SJ; Elfick A
    Chembiochem; 2020 Jul; 21(13):1856-1860. PubMed ID: 32003116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme Engineering Renders Chlorinase the Activity of Fluorinase.
    Jiang Y; Yao M; Niu H; Wang W; He J; Qiao B; Li B; Dong M; Xiao W; Yuan Y
    J Agric Food Chem; 2024 Jan; 72(2):1203-1212. PubMed ID: 38179953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The gene cluster for fluorometabolite biosynthesis in Streptomyces cattleya: a thioesterase confers resistance to fluoroacetyl-coenzyme A.
    Huang F; Haydock SF; Spiteller D; Mironenko T; Li TL; O'Hagan D; Leadlay PF; Spencer JB
    Chem Biol; 2006 May; 13(5):475-84. PubMed ID: 16720268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure and mechanism of a bacterial fluorinating enzyme.
    Dong C; Huang F; Deng H; Schaffrath C; Spencer JB; O'Hagan D; Naismith JH
    Nature; 2004 Feb; 427(6974):561-5. PubMed ID: 14765200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The identification of 5'-fluoro-5-deoxyinosine as a shunt product in cell free extracts of Streptomyces cattleya.
    Cobb SL; Deng H; Hamilton JT; McGlinchey RP; O'Hagan D; Schaffrath C
    Bioorg Chem; 2005 Oct; 33(5):393-401. PubMed ID: 16165185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorinase: a tool for the synthesis of ¹⁸F-labeled sugars and nucleosides for PET.
    Onega M; Winkler M; O'Hagan D
    Future Med Chem; 2009 Aug; 1(5):865-73. PubMed ID: 21426085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorinated natural products: the biosynthesis of fluoroacetate and 4-fluorothreonine in Streptomyces cattleya.
    Murphy CD; Schaffrath C; O'Hagan D
    Chemosphere; 2003 Jul; 52(2):455-61. PubMed ID: 12738270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalysis by desolvation: the catalytic prowess of SAM-dependent halide-alkylating enzymes.
    Lohman DC; Edwards DR; Wolfenden R
    J Am Chem Soc; 2013 Oct; 135(39):14473-5. PubMed ID: 24041082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorinase mediated C-(18)F bond formation, an enzymatic tool for PET labelling.
    Deng H; Cobb SL; Gee AD; Lockhart A; Martarello L; McGlinchey RP; O'Hagan D; Onega M
    Chem Commun (Camb); 2006 Feb; (6):652-4. PubMed ID: 16446840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of enzymatic fluorination in Streptomyces cattleya.
    Zhu X; Robinson DA; McEwan AR; O'Hagan D; Naismith JH
    J Am Chem Soc; 2007 Nov; 129(47):14597-604. PubMed ID: 17985882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro reconstituted biotransformation of 4-fluorothreonine from fluoride ion: application of the fluorinase.
    Deng H; Cross SM; McGlinchey RP; Hamilton JT; O'Hagan D
    Chem Biol; 2008 Dec; 15(12):1268-76. PubMed ID: 19101471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.