These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 11907679)

  • 21. Biosynthetic and environmental effects on the stable carbon isotopic compositions of anteiso- (3-methyl) and iso- (2-methyl) alkanes in tobacco leaves.
    Grice K; Lu H; Zhou Y; Stuart-Williams H; Farquhar GD
    Phytochemistry; 2008 Nov; 69(16):2807-14. PubMed ID: 18954883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anaerobic 1-alkene metabolism by the alkane- and alkene-degrading sulfate reducer Desulfatibacillum aliphaticivorans strain CV2803T.
    Grossi V; Cravo-Laureau C; Méou A; Raphel D; Garzino F; Hirschler-Réa A
    Appl Environ Microbiol; 2007 Dec; 73(24):7882-90. PubMed ID: 17965214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anaerobic oxidation of n-alkenes by sulphate-reducing bacteria from the genus Desulfatiferula: n-ketones as potential metabolites.
    Grossi V; Cravo-Laureau C; Rontani JF; Cros M; Hirschler-Réa A
    Res Microbiol; 2011 Nov; 162(9):915-22. PubMed ID: 21810468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of o-xylene and m-xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum.
    Morasch B; Schink B; Tebbe CC; Meckenstock RU
    Arch Microbiol; 2004 Jun; 181(6):407-17. PubMed ID: 15127183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria.
    Kniemeyer O; Musat F; Sievert SM; Knittel K; Wilkes H; Blumenberg M; Michaelis W; Classen A; Bolm C; Joye SB; Widdel F
    Nature; 2007 Oct; 449(7164):898-901. PubMed ID: 17882164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture.
    Kropp KG; Davidova IA; Suflita JM
    Appl Environ Microbiol; 2000 Dec; 66(12):5393-8. PubMed ID: 11097919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proposed modifications to metabolic model for glycogen-accumulating organisms under anaerobic conditions.
    Zeng R; Yuan Z; Van Loosdrecht MC; Keller J
    Biotechnol Bioeng; 2002 Nov; 80(3):277-9. PubMed ID: 12226859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aerobic and anaerobic metabolism of squalene by a denitrifying bacterium isolated from marine sediment.
    Rontani JF; Mouzdahir A; Michotey V; Bonin P
    Arch Microbiol; 2002 Oct; 178(4):279-87. PubMed ID: 12209261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for a 1,2 Shift of a Hydrogen Atom in a Radical Intermediate of the Methylmalonyl-CoA Mutase Reaction.
    Kunz M; Rétey J
    Bioorg Chem; 2000 Jun; 28(3):134-139. PubMed ID: 10915551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium.
    Callaghan AV; Gieg LM; Kropp KG; Suflita JM; Young LY
    Appl Environ Microbiol; 2006 Jun; 72(6):4274-82. PubMed ID: 16751542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of intermediates formed during anaerobic benzene degradation by an iron-reducing enrichment culture.
    Kunapuli U; Griebler C; Beller HR; Meckenstock RU
    Environ Microbiol; 2008 Jul; 10(7):1703-12. PubMed ID: 18412549
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatic reactions in anaerobic 2-methylnaphthalene degradation by the sulphate-reducing enrichment culture N 47.
    Safinowski M; Meckenstock RU
    FEMS Microbiol Lett; 2004 Nov; 240(1):99-104. PubMed ID: 15500985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01.
    So CM; Young LY
    Appl Environ Microbiol; 1999 Dec; 65(12):5532-40. PubMed ID: 10584014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteome analysis of Sulfolobus solfataricus P2 propanol metabolism.
    Chong PK; Burja AM; Radianingtyas H; Fazeli A; Wright PC
    J Proteome Res; 2007 Apr; 6(4):1430-9. PubMed ID: 17315908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anaerobic metabolism of 2-hydroxybenzoic acid (salicylic acid) by a denitrifying bacterium.
    Bonting CF; Fuchs G
    Arch Microbiol; 1996 Jun; 165(6):402-8. PubMed ID: 8661934
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacterial metabolism of long-chain n-alkanes.
    Wentzel A; Ellingsen TE; Kotlar HK; Zotchev SB; Throne-Holst M
    Appl Microbiol Biotechnol; 2007 Oct; 76(6):1209-21. PubMed ID: 17673997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. (R)-Benzylsuccinyl-CoA dehydrogenase of Thauera aromatica, an enzyme of the anaerobic toluene catabolic pathway.
    Leutwein C; Heider J
    Arch Microbiol; 2002 Dec; 178(6):517-24. PubMed ID: 12420174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acyl-coenzyme a formation of simvastatin in mouse liver preparations.
    Li C; Subramanian R; Yu S; Prueksaritanont T
    Drug Metab Dispos; 2006 Jan; 34(1):102-10. PubMed ID: 16251252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway.
    Annweiler E; Michaelis W; Meckenstock RU
    Appl Environ Microbiol; 2002 Feb; 68(2):852-8. PubMed ID: 11823228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3.
    So CM; Phelps CD; Young LY
    Appl Environ Microbiol; 2003 Jul; 69(7):3892-900. PubMed ID: 12839758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.