These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11907817)

  • 1. Characterization of the calcium release domains during excitation-contraction coupling in skeletal muscle fibres.
    DiFranco M; Novo D; Vergara JL
    Pflugers Arch; 2002 Feb; 443(4):508-19. PubMed ID: 11907817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium release domains in mammalian skeletal muscle studied with two-photon imaging and spot detection techniques.
    Gómez J; Neco P; DiFranco M; Vergara JL
    J Gen Physiol; 2006 Jun; 127(6):623-37. PubMed ID: 16735751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of sarcoplasmic reticulum Ca2+ content on action potential-induced Ca2+ release in rat skeletal muscle fibres.
    Posterino GS; Lamb GD
    J Physiol; 2003 Aug; 551(Pt 1):219-37. PubMed ID: 12844504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct measurement of SR release flux by tracking 'Ca2+ spikes' in rat cardiac myocytes.
    Song LS; Sham JS; Stern MD; Lakatta EG; Cheng H
    J Physiol; 1998 Nov; 512 ( Pt 3)(Pt 3):677-91. PubMed ID: 9769413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The action potential-evoked sarcoplasmic reticulum calcium release is impaired in mdx mouse muscle fibres.
    Woods CE; Novo D; DiFranco M; Vergara JL
    J Physiol; 2004 May; 557(Pt 1):59-75. PubMed ID: 15004213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between depolarization-induced force responses and Ca2+ content in skeletal muscle fibres of rat and toad.
    Owen VJ; Lamb GD; Stephenson DG; Fryer MW
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):571-86. PubMed ID: 9051571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Mg2+ on Ca2+ release from sarcoplasmic reticulum of skeletal muscle fibres from yabby (crustacean) and rat.
    Launikonis BS; Stephenson DG
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):299-312. PubMed ID: 10896719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-controlled Ca2+ release and entry flux in isolated adult muscle fibres of the mouse.
    Ursu D; Schuhmeier RP; Melzer W
    J Physiol; 2005 Jan; 562(Pt 2):347-65. PubMed ID: 15528246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of the indicator fluo-5N to measure sarcoplasmic reticulum calcium in single muscle fibres of the cane toad.
    Kabbara AA; Allen DG
    J Physiol; 2001 Jul; 534(Pt 1):87-97. PubMed ID: 11432994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclopiazonic acid and thapsigargin reduce Ca2+ influx in frog skeletal muscle fibres as a result of Ca2+ store depletion.
    Même W; Léoty C
    Acta Physiol Scand; 2001 Dec; 173(4):391-9. PubMed ID: 11903131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of sarcoplasmic reticulum (SR) calcium content on SR calcium release elicited by small voltage-clamp depolarizations in frog cut skeletal muscle fibers equilibrated with 20 mM EGTA.
    Pape PC; Carrier N
    J Gen Physiol; 1998 Aug; 112(2):161-79. PubMed ID: 9689025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitation-contraction coupling in intact frog skeletal muscle fibers injected with mmolar concentrations of fura-2.
    Hollingworth S; Harkins AB; Kurebayashi N; Konishi M; Baylor SM
    Biophys J; 1992 Jul; 63(1):224-34. PubMed ID: 1330027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation by caffeine of calcium-release microdomains in frog skeletal muscle fibers.
    Vergara JL; Difranco M
    Biol Res; 2006; 39(3):567-81. PubMed ID: 17106587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres.
    Pape PC; Fénelon K; Lamboley CR; Stachura D
    J Physiol; 2007 May; 581(Pt 1):319-67. PubMed ID: 17331996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of the site of Ca2+ release at the level of a single sarcomere in skeletal muscle fibres.
    Escobar AL; Monck JR; Fernandez JM; Vergara JL
    Nature; 1994 Feb; 367(6465):739-41. PubMed ID: 8107869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of oxidation and cytosolic redox conditions on excitation-contraction coupling in rat skeletal muscle.
    Posterino GS; Cellini MA; Lamb GD
    J Physiol; 2003 Mar; 547(Pt 3):807-23. PubMed ID: 12562929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast calcium removal during single twitches in amphibian skeletal muscle fibres.
    Caputo C; Bolaños P; Escobar AL
    J Muscle Res Cell Motil; 1999 Aug; 20(5-6):555-67. PubMed ID: 10555074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of calcium feedback in excitation-contraction coupling in isolated triads.
    Yano M; el-Hayek R; Ikemoto N
    J Biol Chem; 1995 Aug; 270(34):19936-42. PubMed ID: 7650009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of 2,3-butanedione monoxime on excitation-contraction coupling in frog twitch fibres.
    De Armas R; González S; Brum G; Pizarro G
    J Muscle Res Cell Motil; 1998 Nov; 19(8):961-77. PubMed ID: 10047995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arteriolar dilations induced by contraction of hamster cremaster muscle are dependent on changes in endothelial cell calcium.
    Murrant CL; Duza T; Kim MB; Cohen KD; Sarelius IH
    Acta Physiol Scand; 2004 Mar; 180(3):231-8. PubMed ID: 14962004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.