These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 11908804)
1. Characterization of amino acid side chain losses in electron capture dissociation. Cooper HJ; Hudgins RR; Håkansson K; Marshall AG J Am Soc Mass Spectrom; 2002 Mar; 13(3):241-9. PubMed ID: 11908804 [TBL] [Abstract][Full Text] [Related]
2. Dehydration versus deamination of N-terminal glutamine in collision-induced dissociation of protonated peptides. Neta P; Pu QL; Kilpatrick L; Yang X; Stein SE J Am Soc Mass Spectrom; 2007 Jan; 18(1):27-36. PubMed ID: 17005415 [TBL] [Abstract][Full Text] [Related]
3. Collision-Induced Dissociation of Deprotonated Peptides. Relative Abundance of Side-Chain Neutral Losses, Residue-Specific Product Ions, and Comparison with Protonated Peptides. Liang Y; Neta P; Yang X; Stein SE J Am Soc Mass Spectrom; 2018 Mar; 29(3):463-469. PubMed ID: 29143271 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the electron capture dissociation fragmentation behavior of doubly and triply protonated peptides from trypsin, Glu-C, and chymotrypsin digestion. Kalli A; Håkansson K J Proteome Res; 2008 Jul; 7(7):2834-44. PubMed ID: 18549259 [TBL] [Abstract][Full Text] [Related]
5. Tandem mass spectrometry of amidated peptides. Mouls L; Subra G; Aubagnac JL; Martinez J; Enjalbal C J Mass Spectrom; 2006 Nov; 41(11):1470-83. PubMed ID: 17072914 [TBL] [Abstract][Full Text] [Related]
6. Combined electron capture and infrared multiphoton dissociation for multistage MS/MS in a Fourier transform ion cyclotron resonance mass spectrometer. Håkansson K; Chalmers MJ; Quinn JP; McFarland MA; Hendrickson CL; Marshall AG Anal Chem; 2003 Jul; 75(13):3256-62. PubMed ID: 12964777 [TBL] [Abstract][Full Text] [Related]
7. Effect of the basic residue on the energetics, dynamics, and mechanisms of gas-phase fragmentation of protonated peptides. Laskin J; Yang Z; Song T; Lam C; Chu IK J Am Chem Soc; 2010 Nov; 132(45):16006-16. PubMed ID: 20977217 [TBL] [Abstract][Full Text] [Related]
8. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus. Li Z; Yalcin T; Cassady CJ J Mass Spectrom; 2006 Jul; 41(7):939-49. PubMed ID: 16810639 [TBL] [Abstract][Full Text] [Related]
9. Electron capture dissociation mass spectrometry of peptide cations containing a lysine homologue: a mobile proton model for explaining the observation of b-type product ions. Lee S; Chung G; Kim J; Oh HB Rapid Commun Mass Spectrom; 2006; 20(21):3167-75. PubMed ID: 17016809 [TBL] [Abstract][Full Text] [Related]
10. The radical ion chemistry of S-nitrosylated peptides. Jones AW; Winn PJ; Cooper HJ J Am Soc Mass Spectrom; 2012 Dec; 23(12):2063-74. PubMed ID: 23055078 [TBL] [Abstract][Full Text] [Related]
11. Natural structural motifs that suppress peptide ion fragmentation after electron capture. Chan WY; Chan TW J Am Soc Mass Spectrom; 2010 Jul; 21(7):1235-44. PubMed ID: 20434361 [TBL] [Abstract][Full Text] [Related]
12. Effects of the position of internal histidine residues on the collision-induced fragmentation of triply protonated tryptic peptides. Willard BB; Kinter M J Am Soc Mass Spectrom; 2001 Dec; 12(12):1262-71. PubMed ID: 11766753 [TBL] [Abstract][Full Text] [Related]
13. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation. Lioe H; Laskin J; Reid GE; O'Hair RA J Phys Chem A; 2007 Oct; 111(42):10580-8. PubMed ID: 17914758 [TBL] [Abstract][Full Text] [Related]
14. Negative ion dissociation of peptides containing hydroxyl side chains. Pu D; Cassady CJ Rapid Commun Mass Spectrom; 2008; 22(2):91-100. PubMed ID: 18059044 [TBL] [Abstract][Full Text] [Related]
15. Comparison of electron capture dissociation and collisionally activated dissociation of polycations of peptide nucleic acids. Olsen JV; Haselmann KF; Nielsen ML; Budnik BA; Nielsen PE; Zubarev RA Rapid Commun Mass Spectrom; 2001; 15(12):969-74. PubMed ID: 11400205 [TBL] [Abstract][Full Text] [Related]
16. Experimental and theoretical investigations of the loss of amino acid side chains in electron capture dissociation of model peptides. Fung YM; Chan TW J Am Soc Mass Spectrom; 2005 Sep; 16(9):1523-35. PubMed ID: 16023365 [TBL] [Abstract][Full Text] [Related]
17. Detection and characterization of methionine oxidation in peptides by collision-induced dissociation and electron capture dissociation. Guan Z; Yates NA; Bakhtiar R J Am Soc Mass Spectrom; 2003 Jun; 14(6):605-13. PubMed ID: 12781462 [TBL] [Abstract][Full Text] [Related]
18. A mechanistic investigation of the enhanced cleavage at histidine in the gas-phase dissociation of protonated peptides. Tsaprailis G; Nair H; Zhong W; Kuppannan K; Futrell JH; Wysocki VH Anal Chem; 2004 Apr; 76(7):2083-94. PubMed ID: 15053674 [TBL] [Abstract][Full Text] [Related]
19. Repeatability and reproducibility of product ion abundances in electron capture dissociation mass spectrometry of peptides. Ben Hamidane H; Vorobyev A; Tsybin YO Eur J Mass Spectrom (Chichester); 2011; 17(4):321-31. PubMed ID: 22006634 [TBL] [Abstract][Full Text] [Related]
20. Comparison of collision-induced dissociation and electron-induced dissociation of singly protonated aromatic amino acids, cystine and related simple peptides using a hybrid linear ion trap-FT-ICR mass spectrometer. Lioe H; O'Hair RA Anal Bioanal Chem; 2007 Nov; 389(5):1429-37. PubMed ID: 17874085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]