These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 11909028)

  • 1. Dynamic critical behavior of an extended reptation dynamics for self-avoiding walks.
    Caracciolo S; Papinutto M; Pelissetto A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031106. PubMed ID: 11909028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Violation of the des Cloizeaux relation for self-avoiding walks on Sierpinski square lattices.
    Marini F; Ordemann A; Porto M; Roman HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051102. PubMed ID: 17279872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universality of crossover scaling for the adsorption transition of lattice polymers.
    Bradly CJ; Owczarek AL; Prellberg T
    Phys Rev E; 2018 Feb; 97(2-1):022503. PubMed ID: 29548077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trapping in self-avoiding walks with nearest-neighbor attraction.
    Hooper W; Klotz AR
    Phys Rev E; 2020 Sep; 102(3-1):032132. PubMed ID: 33076037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous critical behavior in the polymer collapse transition of three-dimensional lattice trails.
    Bedini A; Owczarek AL; Prellberg T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011123. PubMed ID: 23005384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grand-canonical and canonical solution of self-avoiding walks with up to three monomers per site on the Bethe lattice.
    Oliveira TJ; Stilck JF; Serra P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041804. PubMed ID: 19905330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crossover phenomena in spin models with medium-range interactions and self-avoiding walks with medium-range jumps.
    Caracciolo S; Causo MS; Pelissetto A; Rossi P; Vicari E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046130. PubMed ID: 11690113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-avoiding walks on Sierpinski lattices in two and three dimensions.
    Ordemann A; Porto M; Roman HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021107. PubMed ID: 11863503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling of Hamiltonian walks on fractal lattices.
    Elezović-Hadzić S; Marcetić D; Maletić S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011107. PubMed ID: 17677410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Winding angles of long lattice walks.
    Hammer Y; Kantor Y
    J Chem Phys; 2016 Jul; 145(1):014906. PubMed ID: 27394124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifractality of self-avoiding walks on percolation clusters.
    Blavatska V; Janke W
    Phys Rev Lett; 2008 Sep; 101(12):125701. PubMed ID: 18851389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium scaling explorations on a two-dimensional Z(5)-symmetric model.
    da Silva R; Fernandes HA; Drugowich de Felício JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042101. PubMed ID: 25375432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface critical exponents of self-avoiding walks and trails on a square lattice: The universality classes of the theta and theta ' points.
    Chang I; Meirovitch H
    Phys Rev Lett; 1992 Oct; 69(15):2232-2235. PubMed ID: 10046432
    [No Abstract]   [Full Text] [Related]  

  • 14. Extended finite-size scaling of synchronized coupled oscillators.
    Choi C; Ha M; Kahng B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032126. PubMed ID: 24125232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymers confined between two parallel plane walls.
    Hsu HP; Grassberger P
    J Chem Phys; 2004 Jan; 120(4):2034-41. PubMed ID: 15268339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The critical adsorption point of self-avoiding walks: a finite-size scaling approach.
    Luo MB
    J Chem Phys; 2008 Jan; 128(4):044912. PubMed ID: 18248005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed self-avoiding walks in random media.
    Santra SB; Seitz WA; Klein DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):067101. PubMed ID: 11415255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-dependent structural behavior of self-avoiding walks on three-dimensional Sierpinski sponges.
    Fritsche M; Heermann DW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051119. PubMed ID: 20866197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic critical approach to self-organized criticality.
    Laneri K; Rozenfeld AF; Albano EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):065105. PubMed ID: 16485999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent Monte Carlo simulations of critical and Lifshitz points of the axial-next-nearest-neighbor Ising model.
    da Silva R; Alves N; Drugowich de Felício JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012131. PubMed ID: 23410307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.