These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 11909054)
1. Binding of biological effectors on magnetic nanoparticles measured by a magnetically induced transient birefringence experiment. Wilhelm C; Gazeau F; Roger J; Pons JN; Salis MF; Perzynski R; Bacri JC Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031404. PubMed ID: 11909054 [TBL] [Abstract][Full Text] [Related]
2. Transient magnetic birefringence for determining magnetic nanoparticle diameters in dense, highly light scattering media. Köber M; Moros M; Grazú V; de la Fuente JM; Luna M; Briones F Nanotechnology; 2012 Apr; 23(15):155501. PubMed ID: 22456180 [TBL] [Abstract][Full Text] [Related]
3. Determination of the size distribution of non-spherical nanoparticles by electric birefringence-based methods. Arenas-Guerrero P; Delgado ÁV; Donovan KJ; Scott K; Bellini T; Mantegazza F; Jiménez ML Sci Rep; 2018 Jun; 8(1):9502. PubMed ID: 29934624 [TBL] [Abstract][Full Text] [Related]
4. Viscosity and transient electric birefringence study of clay colloidal aggregation. Bakk A; Fossum JO; da Silva GJ; Adland HM; Mikkelsen A; Elgsaeter A Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021407. PubMed ID: 11863523 [TBL] [Abstract][Full Text] [Related]
5. Magnetically induced hyperthermia: size-dependent heating power of γ-Fe(2)O(3) nanoparticles. Lévy M; Wilhelm C; Siaugue JM; Horner O; Bacri JC; Gazeau F J Phys Condens Matter; 2008 May; 20(20):204133. PubMed ID: 21694262 [TBL] [Abstract][Full Text] [Related]
6. Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: impact on macrophage uptake. Lartigue L; Wilhelm C; Servais J; Factor C; Dencausse A; Bacri JC; Luciani N; Gazeau F ACS Nano; 2012 Mar; 6(3):2665-78. PubMed ID: 22324868 [TBL] [Abstract][Full Text] [Related]
7. Affinity analysis for biomolecular interactions based on magneto-optical relaxation measurements. Aurich K; Nagel S; Heister E; Weitschies W Nanotechnology; 2008 Dec; 19(50):505102. PubMed ID: 19942759 [TBL] [Abstract][Full Text] [Related]
8. Determination of the magneto-optical relaxation of magnetic nanoparticles as a homogeneous immunoassay. Aurich K; Nagel S; Glöckl G; Weitschies W Anal Chem; 2007 Jan; 79(2):580-6. PubMed ID: 17222023 [TBL] [Abstract][Full Text] [Related]
9. Brownian dynamics investigation of magnetization and birefringence relaxations in ferrofluids. Mériguet G; Jardat M; Turq P J Chem Phys; 2005 Oct; 123(14):144915. PubMed ID: 16238432 [TBL] [Abstract][Full Text] [Related]
10. Hydrodynamic properties of magnetic nanoparticles with tunable shape anisotropy: prediction and experimental verification. Martchenko I; Dietsch H; Moitzi C; Schurtenberger P J Phys Chem B; 2011 Dec; 115(49):14838-45. PubMed ID: 21985450 [TBL] [Abstract][Full Text] [Related]
11. The measurement of the rotational diffusion coefficient of bovine plasma fibronectin by electric birefringence technique. Vuillard L; Roux B; Miller A Eur J Biochem; 1990 Jul; 191(2):333-6. PubMed ID: 2384082 [TBL] [Abstract][Full Text] [Related]
12. Effect of surface modification on magnetization of iron oxide nanoparticle colloids. Yuan Y; Rende D; Altan CL; Bucak S; Ozisik R; Borca-Tasciuc DA Langmuir; 2012 Sep; 28(36):13051-9. PubMed ID: 22889238 [TBL] [Abstract][Full Text] [Related]
13. Highly selective isolation and purification of heme proteins in biological samples using multifunctional magnetic nanospheres. Liu Y; Li Y; Wei Y J Sep Sci; 2014 Dec; 37(24):3745-52. PubMed ID: 25298184 [TBL] [Abstract][Full Text] [Related]
14. Effect of particle adsorption rates on the disproportionation process in pickering stabilised bubbles. Ettelaie R; Murray B J Chem Phys; 2014 May; 140(20):204713. PubMed ID: 24880317 [TBL] [Abstract][Full Text] [Related]
15. Effect of nanoparticle and aggregate size on the relaxometric properties of MR contrast agents based on high quality magnetite nanoparticles. Roca AG; Veintemillas-Verdaguer S; Port M; Robic C; Serna CJ; Morales MP J Phys Chem B; 2009 May; 113(19):7033-9. PubMed ID: 19378984 [TBL] [Abstract][Full Text] [Related]
16. Electric birefringence evaluation of particle size distributions: theory for polydisperse equivalent spheres. Jennings BR; Oakley DM Appl Opt; 1982 Apr; 21(8):1519-24. PubMed ID: 20389885 [TBL] [Abstract][Full Text] [Related]
17. Brownian motion of aggregating nanoparticles studied by photon correlation spectroscopy and measurements of dynamic magnetic properties. Petersson K; Ilver D; Johansson C; Krozer A Anal Chim Acta; 2006 Jul; 573-574():138-46. PubMed ID: 17723517 [TBL] [Abstract][Full Text] [Related]
18. Alignment of bicelles studied with high-field magnetic birefringence and small-angle neutron scattering measurements. Liebi M; van Rhee PG; Christianen PC; Kohlbrecher J; Fischer P; Walde P; Windhab EJ Langmuir; 2013 Mar; 29(10):3467-73. PubMed ID: 23406168 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of aligned hematite nanoparticles on chitosan-alginate films. Sreeram KJ; Nidhin M; Nair BU Colloids Surf B Biointerfaces; 2009 Jul; 71(2):260-7. PubMed ID: 19303261 [TBL] [Abstract][Full Text] [Related]
20. Determination of hydrodynamic properties of bare gold and silver nanoparticles as a fluorescent probe using its surface-plasmon-induced photoluminescence by fluorescence correlation spectroscopy. Prashanthi S; Lanke SR; Kumar PH; Siva D; Bangal PR Appl Spectrosc; 2012 Jul; 66(7):835-41. PubMed ID: 22710248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]