These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11909066)

  • 1. Electrorheological fluid under elongation, compression, and shearing.
    Tian Y; Meng Y; Mao H; Wen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031507. PubMed ID: 11909066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient response of an electrorheological fluid under square-wave electric field excitation.
    Tian Y; Li C; Zhang M; Meng Y; Wen S
    J Colloid Interface Sci; 2005 Aug; 288(1):290-7. PubMed ID: 15927589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient response of compressed electrorheological fluid.
    Tian Y; Zhang M; Meng Y; Wen S
    J Colloid Interface Sci; 2005 Oct; 290(1):289-97. PubMed ID: 15935367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-static electrorheological properties of hematite/silicone oil suspensions under DC electric fields.
    Espin MJ; Delgado AV; Płocharski J
    Langmuir; 2005 May; 21(11):4896-903. PubMed ID: 15896029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and electrorheological property of rare earth modified amorphous BaxSr1-xTiO3 gel electrorheological fluid.
    Wu Q; Zhao By; Chen le S; Fang C; Hu Ka
    J Colloid Interface Sci; 2005 Feb; 282(2):493-8. PubMed ID: 15589557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrorheological fluids based on glycerol-activated titania gel particles and silicone oil with high yield strength.
    Yin JB; Zhao XP
    J Colloid Interface Sci; 2003 Jan; 257(2):228-36. PubMed ID: 16256474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrorheological suspensions of laponite in oil: rheometry studies.
    Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO
    Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new approach of enhancing the shear stress of electrorheological fluids of montmorillonite nanocomposite by emulsion intercalation of poly-N-methaniline.
    Lu J; Zhao X
    J Colloid Interface Sci; 2004 May; 273(2):651-7. PubMed ID: 15082406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comment on "Universal yield stress equation for transient response of zeolite based electrorheological fluid".
    Park BJ; Choi HJ
    J Colloid Interface Sci; 2010 May; 345(2):554-5. PubMed ID: 20227711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural explanation of the rheology of a colloidal suspension under high dc electric fields.
    Espín MJ; Delgado AV; González-Caballero F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041503. PubMed ID: 16711805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible shear thickening at low shear rates of electrorheological fluids under electric fields.
    Tian Y; Zhang M; Jiang J; Pesika N; Zeng H; Israelachvili J; Meng Y; Wen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011401. PubMed ID: 21405692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear-enhanced yield stress in electrorheological fluids.
    Lau KC; Shi L; Tam WY; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):052502. PubMed ID: 12786202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Static shear modulus of electrorheological fluids.
    Shi L; Tam WY; Huang X; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051501. PubMed ID: 16802937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressions of electrorheological fluids under different initial gap distances.
    Tian Y; Wen S; Meng Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051501. PubMed ID: 12786152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of potato starch and its electrorheological suspension.
    Sung JH; Park DP; Park BJ; Choi HJ; Jhon MS
    Biomacromolecules; 2005; 6(4):2182-8. PubMed ID: 16004461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrorheological properties of polyaniline suspensions: field-induced liquid to solid transition and residual gel structure.
    Hiamtup P; Sirivat A; Jamieson AM
    J Colloid Interface Sci; 2006 Mar; 295(1):270-8. PubMed ID: 16168424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrorheological fluid dynamics.
    Zhang J; Gong X; Liu C; Wen W; Sheng P
    Phys Rev Lett; 2008 Nov; 101(19):194503. PubMed ID: 19113272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrorheological Fluids with High Shear Stress Based on Wrinkly Tin Titanyl Oxalate.
    Wu J; Zhang L; Xin X; Zhang Y; Wang H; Sun A; Cheng Y; Chen X; Xu G
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6785-6792. PubMed ID: 29388421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mixing effect of amine and carboxyl groups on electrorheological properties and its analysis by in situ FT-IR under an electric field.
    Ko YG; Lee HJ; Park YS; Woo JW; Choi US
    Phys Chem Chem Phys; 2013 Oct; 15(39):16527-32. PubMed ID: 23945542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfibrillated Cellulose Suspension and Its Electrorheology.
    Choi K; Nam JD; Kwon SH; Choi HJ; Islam MS; Kao N
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31861094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.