These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11909126)

  • 41. Numerical study of discrete models in the class of the nonlinear molecular beam epitaxy equation.
    Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031607. PubMed ID: 15524534
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinetic roughening in slow combustion of paper.
    Myllys M; Maunuksela J; Alava M; Ala-Nissila T; Merikoski J; Timonen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036101. PubMed ID: 11580388
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional renormalization group at large N for disordered systems.
    Le Doussal P; Wiese KJ
    Phys Rev Lett; 2002 Sep; 89(12):125702. PubMed ID: 12225102
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phenomenology of aging in the Kardar-Parisi-Zhang equation.
    Henkel M; Noh JD; Pleimling M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):030102. PubMed ID: 22587028
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Finite-temperature free fermions and the Kardar-Parisi-Zhang equation at finite time.
    Dean DS; Le Doussal P; Majumdar SN; Schehr G
    Phys Rev Lett; 2015 Mar; 114(11):110402. PubMed ID: 25839245
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Circular Kardar-Parisi-Zhang equation as an inflating, self-avoiding ring polymer.
    Santalla SN; Rodríguez-Laguna J; Cuerno R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):010401. PubMed ID: 24580156
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Normal dynamic scaling in the class of the nonlinear molecular-beam-epitaxy equation.
    Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022128. PubMed ID: 24032796
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Universality and corrections to scaling in the ballistic deposition model.
    Aarão Reis FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056116. PubMed ID: 11414970
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spatial persistence and survival probabilities for fluctuating interfaces.
    Constantin M; Sarma SD; Dasgupta C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051603. PubMed ID: 15244825
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Localized growth modes, dynamic textures, and upper critical dimension for the Kardar-Parisi-Zhang equation in the weak-noise limit.
    Fogedby HC
    Phys Rev Lett; 2005 May; 94(19):195702. PubMed ID: 16090188
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Restricted solid-on-solid model with a proper restriction parameter N in 4+1 dimensions.
    Kim JM; Kim SW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):034102. PubMed ID: 24125386
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nonequilibrium critical dynamics of the relaxational models C and D.
    Akkineni VK; Täuber UC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036113. PubMed ID: 15089367
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hierarchic trees with branching number close to one: Noiseless Kardar-Parisi-Zhang equation with additional linear term for imitating two-dimensional and three-dimensional phase transitions.
    Saakian DB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):067104. PubMed ID: 12188870
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Critical wetting of a class of nonequilibrium interfaces: a mean-field picture.
    de Los Santos F; Romera E; Al Hammal O; Muñoz MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031105. PubMed ID: 17500666
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interfacial roughening in nonideal fluids: dynamic scaling in the weak- and strong-damping regime.
    Gross M; Varnik F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022407. PubMed ID: 23496526
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Renormalization group analysis of the anisotropic Kardar-Parisi-Zhang equation with spatially correlated noise.
    Jeong H; Kahng B; Kim D
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1995 Aug; 52(2):R1292-R1295. PubMed ID: 9963652
    [No Abstract]   [Full Text] [Related]  

  • 57. Mean-field limit of systems with multiplicative noise.
    Muñoz MA; Colaiori F; Castellano C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056102. PubMed ID: 16383683
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Universal scaling of Lyapunov-exponent fluctuations in space-time chaos.
    Pazó D; López JM; Politi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062909. PubMed ID: 23848750
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Strong anisotropy in two-dimensional surfaces with generic scale invariance: nonlinear effects.
    Vivo E; Nicoli M; Cuerno R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042407. PubMed ID: 24827260
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Scaling of ballistic deposition from a Langevin equation.
    Haselwandter CA; Vvedensky DD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):040101. PubMed ID: 16711773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.