BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 11909128)

  • 1. Creep rupture of viscoelastic fiber bundles.
    Hidalgo RC; Kun F; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):032502. PubMed ID: 11909128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling laws of creep rupture of fiber bundles.
    Kun F; Hidalgo RC; Herrmann HJ; Pál KF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061802. PubMed ID: 16241249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Load capacity and rupture displacement in viscoelastic fiber bundles.
    Baxevanis T; Katsaounis T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046104. PubMed ID: 17500958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical ruptures in a bundle of slowly relaxing fibers.
    Kovács K; Nagy S; Hidalgo RC; Kun F; Herrmann HJ; Pagonabarraga I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036102. PubMed ID: 18517456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxation creep rupture of heterogeneous material under constant strain.
    Hao SW; Zhang BJ; Tian JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):012501. PubMed ID: 22400604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent fiber bundles with local load sharing. II. General Weibull fibers.
    Phoenix SL; Newman WI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066115. PubMed ID: 20365239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Failure process of a bundle of plastic fibers.
    Raischel F; Kun F; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066101. PubMed ID: 16906908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creep rupture of materials: insights from a fiber bundle model with relaxation.
    Jagla EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046119. PubMed ID: 21599252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependent fiber bundles with local load sharing.
    Newman WI; Phoenix SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 1):021507. PubMed ID: 11308498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local load sharing fiber bundles with a lower cutoff of strength disorder.
    Raischel F; Kun F; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):035104. PubMed ID: 17025689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creep rupture of fiber bundles: A molecular dynamics investigation.
    Linga G; Ballone P; Hansen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022405. PubMed ID: 26382414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic critical behavior of failure and plastic deformation in the random fiber bundle model.
    Pradhan S; Bhattacharyya P; Chakrabarti BK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016116. PubMed ID: 12241435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic Monte Carlo algorithm for thermally induced breakdown of fiber bundles.
    Yoshioka N; Kun F; Ito N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033305. PubMed ID: 25871244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brittle-to-ductile transition in a fiber bundle with strong heterogeneity.
    Kovács K; Hidalgo RC; Pagonabarraga I; Kun F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042816. PubMed ID: 23679482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition of strength and stress disorder in creep rupture.
    Halász Z; Danku Z; Kun F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016116. PubMed ID: 22400634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brittle-to-quasibrittle transition in bundles of nonlinear elastic fibers.
    Roy C; Manna SS
    Phys Rev E; 2016 Sep; 94(3-1):032126. PubMed ID: 27739735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. System-size-dependent avalanche statistics in the limit of high disorder.
    Kádár V; Kun F
    Phys Rev E; 2019 Nov; 100(5-1):053001. PubMed ID: 31869880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxation dynamics in strained fiber bundles.
    Pradhan S; Hemmer PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056112. PubMed ID: 17677138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time evolution of damage due to environmentally assisted aging in a fiber bundle model.
    Lennartz-Sassinek S; Main IG; Danku Z; Kun F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032802. PubMed ID: 24125307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-organized dynamics in local load-sharing fiber bundle models.
    Biswas S; Chakrabarti BK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042112. PubMed ID: 24229121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.