These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 11909211)

  • 41. Stability of attractors formed by inertial particles in open chaotic flows.
    Do Y; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036203. PubMed ID: 15524608
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Weakly noisy chaotic scattering.
    Bernal JD; Seoane JM; Sanjuán MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032914. PubMed ID: 24125332
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phase multistability and phase synchronization in an array of locally coupled period-doubling oscillators.
    Shabunin A; Feudel U; Astakhov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026211. PubMed ID: 19792235
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synchronization and desynchronization under the influence of quasiperiodic forcing.
    Neumann E; Sushko I; Maistrenko Y; Feudel U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026202. PubMed ID: 12636771
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of noise on the complete synchronization of two bidirectionally coupled piecewise linear chaotic systems.
    Xiao Y; Xu W; Li X; Tang S
    Chaos; 2009 Mar; 19(1):013131. PubMed ID: 19334995
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lag synchronization and scaling of chaotic attractor in coupled system.
    Bhowmick SK; Pal P; Roy PK; Dana SK
    Chaos; 2012 Jun; 22(2):023151. PubMed ID: 22757558
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Numerical explorations of R. M. Goodwin's business cycle model.
    Jakimowicz A
    Nonlinear Dynamics Psychol Life Sci; 2010 Jan; 14(1):69-83. PubMed ID: 20021778
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatiotemporal coherence resonance of phase synchronization in weakly coupled chaotic oscillators.
    Zhou C; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):040101. PubMed ID: 12005793
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Divergence measure between chaotic attractors.
    Diambra L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):035202. PubMed ID: 11580381
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Onset of colored-noise-induced synchronization in chaotic systems.
    Wang Y; Lai YC; Zheng Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056210. PubMed ID: 19518539
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An approach to chaotic synchronization.
    Hramov AE; Koronovskii AA
    Chaos; 2004 Sep; 14(3):603-10. PubMed ID: 15446970
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intermittent phase synchronization of coupled spatiotemporal chaotic systems.
    Chen JY; Wong KW; Zheng HY; Shuai JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016212. PubMed ID: 11461372
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the constructive role of noise in stabilizing itinerant trajectories in chaotic dynamical systems.
    Kozma R
    Chaos; 2003 Sep; 13(3):1078-89. PubMed ID: 12946201
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Emergence of chimeras through induced multistability.
    Ujjwal SR; Punetha N; Prasad A; Ramaswamy R
    Phys Rev E; 2017 Mar; 95(3-1):032203. PubMed ID: 28415241
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Potential flux landscapes determine the global stability of a Lorenz chaotic attractor under intrinsic fluctuations.
    Li C; Wang E; Wang J
    J Chem Phys; 2012 May; 136(19):194108. PubMed ID: 22612081
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Noise induced escape from a nonhyperbolic chaotic attractor of a periodically driven nonlinear oscillator.
    Chen Z; Li Y; Liu X
    Chaos; 2016 Jun; 26(6):063112. PubMed ID: 27368777
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reactive dynamics of inertial particles in nonhyperbolic chaotic flows.
    Motter AE; Lai YC; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056307. PubMed ID: 14682884
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transition from phase to generalized synchronization in time-delay systems.
    Senthilkumar DV; Lakshmanan M; Kurths J
    Chaos; 2008 Jun; 18(2):023118. PubMed ID: 18601485
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chaotic synchronization under unidirectional coupling: numerics and experiments.
    Cruz JM; Rivera M; Parmananda P
    J Phys Chem A; 2009 Aug; 113(32):9051-6. PubMed ID: 19610633
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phase synchronization between two essentially different chaotic systems.
    Guan S; Lai CH; Wei GW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016205. PubMed ID: 16090064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.