These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 11909223)
1. Naturally invariant measure of chaotic attractors and the conditionally invariant measure of embedded chaotic repellers. Buljan H; Paar V Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036218. PubMed ID: 11909223 [TBL] [Abstract][Full Text] [Related]
2. Snap-back repellers and chaotic attractors. Gardini L; Tramontana F Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046202. PubMed ID: 20481802 [TBL] [Abstract][Full Text] [Related]
3. Stability of attractors formed by inertial particles in open chaotic flows. Do Y; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036203. PubMed ID: 15524608 [TBL] [Abstract][Full Text] [Related]
4. Exact invariant measures: How the strength of measure settles the intensity of chaos. Venegeroles R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062914. PubMed ID: 26172779 [TBL] [Abstract][Full Text] [Related]
5. Effect of noise on the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors. Anishchenko VS; Vadivasova TE; Kopeikin AS; Kurths J; Strelkova GI Phys Rev Lett; 2001 Jul; 87(5):054101. PubMed ID: 11497772 [TBL] [Abstract][Full Text] [Related]
6. Strange nonchaotic repellers. de Moura AP Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036218. PubMed ID: 17930334 [TBL] [Abstract][Full Text] [Related]
7. Chaotic itinerancy based on attractors of one-dimensional maps. Sauer T Chaos; 2003 Sep; 13(3):947-52. PubMed ID: 12946187 [TBL] [Abstract][Full Text] [Related]
8. Scaling laws for noise-induced super-persistent chaotic transients. Do Y; Lai YC Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046208. PubMed ID: 15903771 [TBL] [Abstract][Full Text] [Related]
9. Peculiarities of the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors in the presence of noise. Anishchenko VS; Vadivasova TE; Kopeikin AS; Kurths J; Strelkova GI Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036206. PubMed ID: 11909211 [TBL] [Abstract][Full Text] [Related]
10. Order and chaos in the planar isosceles three-body problem. Zare K; Chesley S Chaos; 1998 Jun; 8(2):475-494. PubMed ID: 12779751 [TBL] [Abstract][Full Text] [Related]
11. Marginal singularities, almost invariant sets, and small perturbations of chaotic dynamical systems. Blank ML Chaos; 1991 Oct; 1(3):347-356. PubMed ID: 12779932 [TBL] [Abstract][Full Text] [Related]
12. Chaotic saddles in a gravitational field: the case of inertial particles in finite domains. Drótos G; Tél T Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056203. PubMed ID: 21728626 [TBL] [Abstract][Full Text] [Related]
13. Multifractal structure of a riddled basin. Suetani H; Horita T Chaos; 2001 Dec; 11(4):795-801. PubMed ID: 12779518 [TBL] [Abstract][Full Text] [Related]
14. Power law polydispersity and fractal structure of hyperbranched polymers. Buzza DM Eur Phys J E Soft Matter; 2004 Jan; 13(1):79-86. PubMed ID: 15024618 [TBL] [Abstract][Full Text] [Related]
15. Measure-theoretical properties of the unstable foliation of two-dimensional differentiable area-preserving systems. Adrover A; Giona M Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):347-62. PubMed ID: 11969769 [TBL] [Abstract][Full Text] [Related]
16. Classification of transcranial Doppler signals using their chaotic invariant measures. Ozturk A; Arslan A Comput Methods Programs Biomed; 2007 May; 86(2):171-80. PubMed ID: 17386958 [TBL] [Abstract][Full Text] [Related]
17. Stochastic perturbations in open chaotic systems: random versus noisy maps. Bódai T; Altmann EG; Endler A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042902. PubMed ID: 23679484 [TBL] [Abstract][Full Text] [Related]
18. Harmonic measure and winding of conformally invariant curves. Duplantier B; Binder IA Phys Rev Lett; 2002 Dec; 89(26):264101. PubMed ID: 12484822 [TBL] [Abstract][Full Text] [Related]
19. Dressed return maps distinguish chaotic mechanisms. Cross DJ; Gilmore R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012919. PubMed ID: 23410416 [TBL] [Abstract][Full Text] [Related]
20. Master crossover behavior of parachor correlations for one-component fluids. Garrabos Y; Palencia F; Lecoutre C; Broseta D; Le Neindre B Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061109. PubMed ID: 18233816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]