These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11909286)

  • 1. Anomalous dispersion and superluminal group velocity in a coaxial photonic crystal: theory and experiment.
    Haché A; Poirier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2B):036608. PubMed ID: 11909286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect.
    Liu NH; Zhu SY; Chen H; Wu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046607. PubMed ID: 12006047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Switching from normal to anomalous dispersion in photonic crystal with Raman gain defect.
    Arkhipkin VG; Myslivets SA
    Opt Lett; 2014 Apr; 39(7):1803-6. PubMed ID: 24686609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gain-assisted superluminal light propagation.
    Wang LJ; Kuzmich A; Dogariu A
    Nature; 2000 Jul; 406(6793):277-9. PubMed ID: 10917523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superluminal propagation of light pulses: A result of interference.
    Wang LG; Liu NH; Lin Q; Zhu SY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066606. PubMed ID: 14754335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superluminal pulse reflection in asymmetric one-dimensional photonic band gaps.
    Longhi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):037601. PubMed ID: 11580484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous group velocity at the high energy range of a 3D photonic nanostructure.
    Botey M; Martorell J; Dorado LA; Depine RA; Lozano G; Míguez H
    Opt Express; 2010 Jul; 18(15):15682-90. PubMed ID: 20720950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures.
    D'Aguanno G; Centini M; Scalora M; Sibilia C; Bloemer MJ; Bowden CM; Haus JW; Bertolotti M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036610. PubMed ID: 11308791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides.
    Engelen RJ; Sugimoto Y; Watanabe Y; Korterik JP; Ikeda N; van Hulst NF; Asakawa K; Kuipers L
    Opt Express; 2006 Feb; 14(4):1658-72. PubMed ID: 19503493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight.
    Finlayson CE; Cattaneo F; Perney NM; Baumberg JJ; Netti MC; Zoorob ME; Charlton MD; Parker GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016619. PubMed ID: 16486307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagation of self-collimated ultrashort pulses in a hybrid photonic crystal.
    Chung KB
    Opt Express; 2011 Aug; 19(17):15705-10. PubMed ID: 21934932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs.
    Notomi M; Yamada K; Shinya A; Takahashi J; Takahashi C; Yokohama I
    Phys Rev Lett; 2001 Dec; 87(25):253902. PubMed ID: 11736577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photonic band gap enhancement in frequency-dependent dielectrics.
    Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046605. PubMed ID: 15600545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical properties of inverted opal photonic band gap crystals with stacking disorder.
    Wang ZL; Chan CT; Zhang WY; Chen Z; Ming NB; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016612. PubMed ID: 12636630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical properties of two-dimensional negative-phase-velocity-medium photonic crystals.
    Zeng Y; Fu Y; Chen X; Lu W; Agren H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066625. PubMed ID: 16907015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density of photonic states in cholesteric liquid crystals.
    Dolganov PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042509. PubMed ID: 25974518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zero-width band gap associated with the n[over] = 0 condition in photonic crystals containing left-handed materials.
    de Dios-Leyva M; Drake-Pérez JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036608. PubMed ID: 19392074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superluminal reflection and transmission of light pulses via resonant four-wave mixing in cesium vapor.
    Jiang Q; Zhang Y; Wang D; Ahrens S; Zhang J; Zhu S
    Opt Express; 2016 Oct; 24(21):24451-24459. PubMed ID: 27828173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-frequency dynamics of superluminal pulse transition to the subluminal regime.
    Dorrah AH; Ramakrishnan A; Mojahedi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033206. PubMed ID: 25871237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental observation of superluminal pulse reflection in a double-Lorentzian photonic band gap.
    Longhi S; Marano M; Laporta P; Belmonte M; Crespi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):045602. PubMed ID: 12005917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.