These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 11909368)

  • 1. Hot nanotubes: stable heating of individual multiwall carbon nanotubes to 2000 k induced by the field-emission current.
    Purcell ST; Vincent P; Journet C; Binh VT
    Phys Rev Lett; 2002 Mar; 88(10):105502. PubMed ID: 11909368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field emission from a selected multiwall carbon nanotube.
    Passacantando M; Bussolotti F; Santucci S; Di Bartolomeo A; Giubileo F; Iemmo L; Cucolo AM
    Nanotechnology; 2008 Oct; 19(39):395701. PubMed ID: 21832602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the stability of multiwalled carbon nanotube dispersions in water.
    Marsh DH; Rance GA; Zaka MH; Whitby RJ; Khlobystov AN
    Phys Chem Chem Phys; 2007 Oct; 9(40):5490-6. PubMed ID: 17925975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of graphitic order on field emission stability of carbon nanotubes.
    Kayastha VK; Ulmen B; Yap YK
    Nanotechnology; 2007 Jan; 18(3):035206. PubMed ID: 19636115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of the geometry and material properties of a carbon joint produced by electron beam induced deposition on the electrical resistance of a multiwalled carbon nanotube-to-metal contact interface.
    Rykaczewski K; Henry MR; Kim SK; Fedorov AG; Kulkarni D; Singamaneni S; Tsukruk VV
    Nanotechnology; 2010 Jan; 21(3):035202. PubMed ID: 19966395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope.
    Dames C; Chen S; Harris CT; Huang JY; Ren ZF; Dresselhaus MS; Chen G
    Rev Sci Instrum; 2007 Oct; 78(10):104903. PubMed ID: 17979450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate.
    Yang J; Yang Y; Waltermire SW; Gutu T; Zinn AA; Xu TT; Chen Y; Li D
    Small; 2011 Aug; 7(16):2334-40. PubMed ID: 21648073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on the mechanical and electrical reliability of individual carbon nanotube field emission cathodes.
    Ribaya BP; Leung J; Brown P; Rahman M; Nguyen CV
    Nanotechnology; 2008 May; 19(18):185201. PubMed ID: 21825685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote Joule heating by a carbon nanotube.
    Baloch KH; Voskanian N; Bronsgeest M; Cumings J
    Nat Nanotechnol; 2012 Apr; 7(5):316-9. PubMed ID: 22484913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Making carbon nanotube electron sources of defined lengths and with closed caps.
    Heeres EC; Oosterkamp TH; de Jonge N
    Nanotechnology; 2011 Jun; 22(23):235308. PubMed ID: 21483089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced field emission from multiwall carbon nanotube films by secondary growth.
    Klinke C; Delvigne E; Barth JV; Kern K
    J Phys Chem B; 2005 Nov; 109(46):21677-80. PubMed ID: 16853815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling electron-beam-induced carbon deposition on carbon nanotubes by Joule heating.
    Wei XL; Liu Y; Chen Q; Peng LM
    Nanotechnology; 2008 Sep; 19(35):355304. PubMed ID: 21828844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaled fabrication of single-nanotube-tipped ends from carbon nanotube micro-yarns and their field emission applications.
    Wei Y; Liu L; Liu P; Xiao L; Jiang K; Fan S
    Nanotechnology; 2008 Nov; 19(47):475707. PubMed ID: 21836288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field emission from multiwall carbon nanotubes in controlled ambient gases, H2, CO, N2 and O2.
    Hata K; Takakura A; Saito Y
    Ultramicroscopy; 2003; 95(1-4):107-12. PubMed ID: 12535552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melt mixed composites of poly(ethylene-co-methacrylic acid) ionomers and multiwall carbon nanotubes: influence of specific interactions.
    Bose S; Bhattacharyya AR; Chawley M; Kodgire PV; Kulkarni AR; Misra A; Pötschke P
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1721-7. PubMed ID: 18572570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electrochemical glucose biosensor exploiting a polyaniline grafted multiwalled carbon nanotube/perfluorosulfonate ionomer-silica nanocomposite.
    Gopalan AI; Lee KP; Ragupathy D; Lee SH; Lee JW
    Biomaterials; 2009 Oct; 30(30):5999-6005. PubMed ID: 19674780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets.
    Ge JJ; Hou H; Li Q; Graham MJ; Greiner A; Reneker DH; Harris FW; Cheng SZ
    J Am Chem Soc; 2004 Dec; 126(48):15754-61. PubMed ID: 15571398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Augmentation of acrylic bone cement with multiwall carbon nanotubes.
    Marrs B; Andrews R; Rantell T; Pienkowski D
    J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic carbon nanotubes: synthesis by electrostatic self-assembly approach and application in biomanipulations.
    Gao C; Li W; Morimoto H; Nagaoka Y; Maekawa T
    J Phys Chem B; 2006 Apr; 110(14):7213-20. PubMed ID: 16599489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tomonaga-Luttinger liquid and Coulomb blockade in multiwall carbon nanotubes under pressure.
    Monteverde M; Garbarino G; Núñez-Regueiro M; Souletie J; Acha C; Jing X; Lu L; Pan ZW; Xie SS; Egger R
    Phys Rev Lett; 2006 Oct; 97(17):176401. PubMed ID: 17155486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.