BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 1190968)

  • 1. [A method for the rapid pick-up of bioelectric potentials from the unprepared body surface of animals, with special reference to cardiac action potentials].
    Grittner W
    Arch Exp Veterinarmed; 1975 Jun; 29(3):459-67. PubMed ID: 1190968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative prediction of body surface potentials from myocardial action potentials using a summed dipole model.
    Babbs CF
    Cardiovasc Eng; 2009 Jun; 9(2):59-71. PubMed ID: 19543975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endocardial recording of monophasic action potentials in the intact dog.
    Samuelsson R; Sjöstrand U
    Acta Soc Med Ups; 1971; 76(5-6):191-210. PubMed ID: 5141077
    [No Abstract]   [Full Text] [Related]  

  • 4. [Estimation of location and size of myocardial infarction from body surface potentials using the ECG inverse solution method].
    Tanaka H; Hirayanagi K; Aoki T; Ihara T; Yamanoi N; Furukawa T
    J Cardiogr; 1985 Sep; 15(3):715-28. PubMed ID: 3837063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A new method of recording spike potentials of the atria from the body surface].
    Rugienius J; Zvironaite V; Kibarskis A; Sakalas A
    Z Gesamte Inn Med; 1981 Jul; 36(14):480-5. PubMed ID: 7281822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of cardiac motion on body surface electrocardiographic potentials: an MRI-based simulation study.
    Wei Q; Liu F; Appleton B; Xia L; Liu N; Wilson S; Riley R; Strugnel W; Slaughter R; Denman R; Crozier S
    Phys Med Biol; 2006 Jul; 51(14):3405-18. PubMed ID: 16825739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some imaging parameters of the oblique dipole layer cardiac generator derivable from body surface electrical potentials.
    Greensite F
    IEEE Trans Biomed Eng; 1992 Feb; 39(2):159-64. PubMed ID: 1612619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramural measurement of transmembrane potential in the isolated pig heart: validation of a novel technique.
    Caldwell BJ; Legrice IJ; Hooks DA; Tai DC; Pullan AJ; Smaill BH
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):1001-10. PubMed ID: 16174023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simultaneous multichannel monophasic action potential electrode array for in vivo epicardial repolarization mapping.
    Sahakian AV; Peterson MS; Shkurovich S; Hamer M; Votapka T; Ji T; Swiryn S
    IEEE Trans Biomed Eng; 2001 Mar; 48(3):345-53. PubMed ID: 11327503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity- and effort-gain analysis: multilead ECG electrode array selection for activation time imaging.
    Hintermüller C; Seger M; Pfeifer B; Fischer G; Modre R; Tilg B
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):2055-66. PubMed ID: 17019870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Evaluation of the bioelectric activity of the heart during antiorthostatic hypokinesia using traditional and modified orthogonal ECG leads].
    Turbasov VD; Artamonova NP; Nechaeva EI
    Kosm Biol Aviakosm Med; 1990; 24(1):42-4. PubMed ID: 2329770
    [No Abstract]   [Full Text] [Related]  

  • 12. A study of the healing-over in the cardiac muscle using suction electrodes.
    Kukushkin NI; Gudzabidze BV
    Gen Physiol Biophys; 1983 Oct; 2(5):363-84. PubMed ID: 6678773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Recording of monophasic action potentials of the heart using suction electrodes. Importance for clinical practice].
    Alusík S
    Vnitr Lek; 1983 Feb; 29(2):124-8. PubMed ID: 6836922
    [No Abstract]   [Full Text] [Related]  

  • 14. [Cellular factors of ventricular electrical desynchronization. Study on the isolated rabbit heart in conditions of normal perfusion and partial depolarization].
    Fabiato A; Coraboeuf E
    J Physiol (Paris); 1969; 61(4):277-303. PubMed ID: 4193638
    [No Abstract]   [Full Text] [Related]  

  • 15. [Ultramicroelectrode method for recording action potentials of the rabbit heart in situ].
    Gromysz H; Pokorski M
    Acta Physiol Pol; 1970; 21(2):277-83. PubMed ID: 5507270
    [No Abstract]   [Full Text] [Related]  

  • 16. The use of temporal information in the regularization of the inverse problem of electrocardiography.
    Oster HS; Rudy Y
    IEEE Trans Biomed Eng; 1992 Jan; 39(1):65-75. PubMed ID: 1572683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis of the secondary information structure of body surface potential maps].
    Tanaka H; Hirayanagi K; Yajima K; Furukawa T
    Iyodenshi To Seitai Kogaku; 1983 Apr; 21(2):106-13. PubMed ID: 6655992
    [No Abstract]   [Full Text] [Related]  

  • 18. Determination of activation and recovery sequences and local repolarization durations from distant electrocardiographic leads.
    Burgess MJ; Baruffi S; Spaggiari S; Macchi E; Lux R; Taccardi B
    Jpn Heart J; 1986 Nov; 27 Suppl 1():205-16. PubMed ID: 3820586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction of intrinsic timing features of cardiac activation from body surface potential maps.
    Kozmann G; Haraszti K; Szakolczai K
    Stud Health Technol Inform; 2002; 90():93-7. PubMed ID: 15460668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A generalized eigensystem approach to the inverse problem of electrocardiography.
    Throne RD; Olson LG
    IEEE Trans Biomed Eng; 1994 Jun; 41(6):592-600. PubMed ID: 7927379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.