BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 11910013)

  • 1. Reciprocal expression of two candidate di-iron enzymes affecting photosystem I and light-harvesting complex accumulation.
    Moseley JL; Page MD; Alder NP; Eriksson M; Quinn J; Soto F; Theg SM; Hippler M; Merchant S
    Plant Cell; 2002 Mar; 14(3):673-88. PubMed ID: 11910013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation and localization of isoforms of the aerobic oxidative cyclase in Chlamydomonas reinhardtii.
    Allen MD; Kropat J; Merchant SS
    Photochem Photobiol; 2008; 84(6):1336-42. PubMed ID: 19067954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii.
    Moseley J; Quinn J; Eriksson M; Merchant S
    EMBO J; 2000 May; 19(10):2139-51. PubMed ID: 10811605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen deficiency responsive gene expression in Chlamydomonas reinhardtii through a copper-sensing signal transduction pathway.
    Quinn JM; Eriksson M; Moseley JL; Merchant S
    Plant Physiol; 2002 Feb; 128(2):463-71. PubMed ID: 11842150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic dissection of nutritional copper signaling in chlamydomonas distinguishes regulatory and target genes.
    Eriksson M; Moseley JL; Tottey S; Del Campo JA; Quinn J; Kim Y; Merchant S
    Genetics; 2004 Oct; 168(2):795-807. PubMed ID: 15514054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size.
    Polle JE; Kanakagiri SD; Melis A
    Planta; 2003 May; 217(1):49-59. PubMed ID: 12721848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetically Programmed Changes in Photosynthetic Cofactor Metabolism in Copper-deficient Chlamydomonas.
    Strenkert D; Limso CA; Fatihi A; Schmollinger S; Basset GJ; Merchant SS
    J Biol Chem; 2016 Sep; 291(36):19118-31. PubMed ID: 27440043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of CRR1-targeted copper deficiency response in
    Wang S; Lv J; Zhang S
    Nanotoxicology; 2019 May; 13(4):447-454. PubMed ID: 30704326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The involvement of a multicopper oxidase in iron uptake by the green algae Chlamydomonas reinhardtii.
    Herbik A; Bölling C; Buckhout TJ
    Plant Physiol; 2002 Dec; 130(4):2039-48. PubMed ID: 12481087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii.
    Im CS; Eberhard S; Huang K; Beck CF; Grossman AR
    Plant J; 2006 Oct; 48(1):1-16. PubMed ID: 16972865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The light-harvesting complex of photosystem I in Chlamydomonas reinhardtii: protein composition, gene structures and phylogenic implications.
    Tokutsu R; Teramoto H; Takahashi Y; Ono TA; Minagawa J
    Plant Cell Physiol; 2004 Feb; 45(2):138-45. PubMed ID: 14988484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular analysis of the Chlamydomonas nuclear gene encoding PsbW and demonstration that PsbW is a subunit of photosystem II, but not photosystem I.
    Bishop CL; Purton S; Nugent JH
    Plant Mol Biol; 2003 May; 52(2):285-9. PubMed ID: 12856936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ni induces the CRR1-dependent regulon revealing overlap and distinction between hypoxia and Cu deficiency responses in Chlamydomonas reinhardtii.
    Blaby-Haas CE; Castruita M; Fitz-Gibbon ST; Kropat J; Merchant SS
    Metallomics; 2016 Jul; 8(7):679-91. PubMed ID: 27172123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex.
    Boudreau E; Takahashi Y; Lemieux C; Turmel M; Rochaix JD
    EMBO J; 1997 Oct; 16(20):6095-104. PubMed ID: 9321389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Lhcb gene family encoding the light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii.
    Teramoto H; Ono T; Minagawa J
    Plant Cell Physiol; 2001 Aug; 42(8):849-56. PubMed ID: 11522911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From economy to luxury: Copper homeostasis in Chlamydomonas and other algae.
    Merchant SS; Schmollinger S; Strenkert D; Moseley JL; Blaby-Haas CE
    Biochim Biophys Acta Mol Cell Res; 2020 Nov; 1867(11):118822. PubMed ID: 32800924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards functional proteomics of membrane protein complexes: analysis of thylakoid membranes from Chlamydomonas reinhardtii.
    Hippler M; Klein J; Fink A; Allinger T; Hoerth P
    Plant J; 2001 Dec; 28(5):595-606. PubMed ID: 11849598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of CpSRP54 function leads to a truncated light-harvesting antenna size in Chlamydomonas reinhardtii.
    Jeong J; Baek K; Kirst H; Melis A; Jin E
    Biochim Biophys Acta Bioenerg; 2017 Jan; 1858(1):45-55. PubMed ID: 27760300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitation energy transfer in Chlamydomonas reinhardtii deficient in the PSI core or the PSII core under conditions mimicking state transitions.
    Wlodarczyk LM; Dinc E; Croce R; Dekker JP
    Biochim Biophys Acta; 2016 Jun; 1857(6):625-33. PubMed ID: 26946087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CrGNAT gene regulates excess copper accumulation and tolerance in Chlamydomonas reinhardtii.
    Wang Y; Cheng ZZ; Chen X; Zheng Q; Yang ZM
    Plant Sci; 2015 Nov; 240():120-9. PubMed ID: 26475193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.