These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 11911366)
1. Posttranscriptional modifications in the A-loop of 23S rRNAs from selected archaea and eubacteria. Hansen MA; Kirpekar F; Ritterbusch W; Vester B RNA; 2002 Feb; 8(2):202-13. PubMed ID: 11911366 [TBL] [Abstract][Full Text] [Related]
2. The archaeon Haloarcula marismortui has few modifications in the central parts of its 23S ribosomal RNA. Kirpekar F; Hansen LH; Rasmussen A; Poehlsgaard J; Vester B J Mol Biol; 2005 May; 348(3):563-73. PubMed ID: 15826654 [TBL] [Abstract][Full Text] [Related]
3. Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry. Kirpekar F; Douthwaite S; Roepstorff P RNA; 2000 Feb; 6(2):296-306. PubMed ID: 10688367 [TBL] [Abstract][Full Text] [Related]
4. Number, position, and significance of the pseudouridines in the large subunit ribosomal RNA of Haloarcula marismortui and Deinococcus radiodurans. Del Campo M; Recinos C; Yanez G; Pomerantz SC; Guymon R; Crain PF; McCloskey JA; Ofengand J RNA; 2005 Feb; 11(2):210-9. PubMed ID: 15659360 [TBL] [Abstract][Full Text] [Related]
5. RNA fragmentation studied in a matrix-assisted laser desorption/ionisation tandem quadrupole/orthogonal time-of-flight mass spectrometer. Kirpekar F; Krogh TN Rapid Commun Mass Spectrom; 2001; 15(1):8-14. PubMed ID: 11135418 [TBL] [Abstract][Full Text] [Related]
6. The first determination of pseudouridine residues in 23S ribosomal RNA from hyperthermophilic Archaea Sulfolobus acidocaldarius. Massenet S; Ansmant I; Motorin Y; Branlant C FEBS Lett; 1999 Nov; 462(1-2):94-100. PubMed ID: 10580099 [TBL] [Abstract][Full Text] [Related]
7. Direct localization by cryo-electron microscopy of secondary structural elements in Escherichia coli 23 S rRNA which differ from the corresponding regions in Haloarcula marismortui. Matadeen R; Sergiev P; Leonov A; Pape T; van der Sluis E; Mueller F; Osswald M; von Knoblauch K; Brimacombe R; Bogdanov A; van Heel M; Dontsova O J Mol Biol; 2001 Apr; 307(5):1341-9. PubMed ID: 11292346 [TBL] [Abstract][Full Text] [Related]
8. Sequence and structural conservation in RNA ribose zippers. Tamura M; Holbrook SR J Mol Biol; 2002 Jul; 320(3):455-74. PubMed ID: 12096903 [TBL] [Abstract][Full Text] [Related]
9. Structure of the L1 protuberance in the ribosome. Nikulin A; Eliseikina I; Tishchenko S; Nevskaya N; Davydova N; Platonova O; Piendl W; Selmer M; Liljas A; Drygin D; Zimmermann R; Garber M; Nikonov S Nat Struct Biol; 2003 Feb; 10(2):104-8. PubMed ID: 12514741 [TBL] [Abstract][Full Text] [Related]
10. Posttranscriptional modification of the central loop of domain V in Escherichia coli 23 S ribosomal RNA. Kowalak JA; Bruenger E; McCloskey JA J Biol Chem; 1995 Jul; 270(30):17758-64. PubMed ID: 7629075 [TBL] [Abstract][Full Text] [Related]
11. A novel partial modification at C2501 in Escherichia coli 23S ribosomal RNA. Andersen TE; Porse BT; Kirpekar F RNA; 2004 Jun; 10(6):907-13. PubMed ID: 15146074 [TBL] [Abstract][Full Text] [Related]
12. Reconstitution of functional 50S ribosomes from in vitro transcripts of Bacillus stearothermophilus 23S rRNA. Green R; Noller HF Biochemistry; 1999 Feb; 38(6):1772-9. PubMed ID: 10026257 [TBL] [Abstract][Full Text] [Related]
13. UV-induced modifications in the peptidyl transferase loop of 23S rRNA dependent on binding of the streptogramin B antibiotic, pristinamycin IA. Porse BT; Kirillov SV; Awayez MJ; Garrett RA RNA; 1999 Apr; 5(4):585-95. PubMed ID: 10199574 [TBL] [Abstract][Full Text] [Related]
14. Indigenous and acquired modifications in the aminoglycoside binding sites of Pseudomonas aeruginosa rRNAs. Gutierrez B; Douthwaite S; Gonzalez-Zorn B RNA Biol; 2013 Aug; 10(8):1324-32. PubMed ID: 23948732 [TBL] [Abstract][Full Text] [Related]
15. Separate pathways for excision and processing of 16S and 23S rRNA from the primary rRNA operon transcript from the hyperthermophilic archaebacterium Sulfolobus acidocaldarius: similarities to eukaryotic rRNA processing. Durovic P; Dennis PP Mol Microbiol; 1994 Jul; 13(2):229-42. PubMed ID: 7527119 [TBL] [Abstract][Full Text] [Related]
16. Mutations in domain V of the 23S ribosomal RNA of Bacillus subtilis that inactivate its protein folding property in vitro. Chowdhury S; Pal S; Ghosh J; DasGupta C Nucleic Acids Res; 2002 Mar; 30(5):1278-85. PubMed ID: 11861922 [TBL] [Abstract][Full Text] [Related]
17. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution. Mueller F; Sommer I; Baranov P; Matadeen R; Stoldt M; Wöhnert J; Görlach M; van Heel M; Brimacombe R J Mol Biol; 2000 Apr; 298(1):35-59. PubMed ID: 10756104 [TBL] [Abstract][Full Text] [Related]
18. YgdE is the 2'-O-ribose methyltransferase RlmM specific for nucleotide C2498 in bacterial 23S rRNA. Purta E; O'Connor M; Bujnicki JM; Douthwaite S Mol Microbiol; 2009 Jun; 72(5):1147-58. PubMed ID: 19400805 [TBL] [Abstract][Full Text] [Related]
19. In vitro complementation analysis localizes 23S rRNA posttranscriptional modifications that are required for Escherichia coli 50S ribosomal subunit assembly and function. Green R; Noller HF RNA; 1996 Oct; 2(10):1011-21. PubMed ID: 8849777 [TBL] [Abstract][Full Text] [Related]