BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11911613)

  • 1. Effect of lacZY-marking of the 2,4-diacetyl-phloroglucinol producing Pseudomonas fluorescens-strain 5-2/4 on its physiological performance and root colonization ability.
    Alsanius BW; Hultberg M; Englund JE
    Microbiol Res; 2002; 157(1):39-45. PubMed ID: 11911613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Survival and ecological fitness of Pseudomonas fluorescens genetically engineered with dual biocontrol mechanisms.
    Bainton NJ; Lynch JM; Naseby D; Way JA
    Microb Ecol; 2004 Oct; 48(3):349-57. PubMed ID: 15692855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sss colonization gene of the tomato-Fusarium oxysporum f. sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type pseudomonas spp.bacteria.
    Dekkers LC; Mulders IH; Phoelich CC; Chin-A-Woeng TF; Wijfjes AH; Lugtenberg BJ
    Mol Plant Microbe Interact; 2000 Nov; 13(11):1177-83. PubMed ID: 11059484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization.
    Lugtenberg BJ; Kravchenko LV; Simons M
    Environ Microbiol; 1999 Oct; 1(5):439-46. PubMed ID: 11207764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria.
    Simons M; van der Bij AJ; Brand I; de Weger LA; Wijffelman CA; Lugtenberg BJ
    Mol Plant Microbe Interact; 1996 Sep; 9(7):600-7. PubMed ID: 8810075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365.
    Kuiper I; Bloemberg GV; Noreen S; Thomas-Oates JE; Lugtenberg BJ
    Mol Plant Microbe Interact; 2001 Sep; 14(9):1096-104. PubMed ID: 11551074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities.
    Wang C; Knill E; Glick BR; Défago G
    Can J Microbiol; 2000 Oct; 46(10):898-907. PubMed ID: 11068676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross talk between 2,4-diacetylphloroglucinol-producing biocontrol pseudomonads on wheat roots.
    Maurhofer M; Baehler E; Notz R; Martinez V; Keel C
    Appl Environ Microbiol; 2004 Apr; 70(4):1990-8. PubMed ID: 15066789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96.
    Mavrodi OV; Mavrodi DV; Weller DM; Thomashow LS
    Appl Environ Microbiol; 2006 Nov; 72(11):7111-22. PubMed ID: 16936061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens.
    Barahona E; Navazo A; Martínez-Granero F; Zea-Bonilla T; Pérez-Jiménez RM; Martín M; Rivilla R
    Appl Environ Microbiol; 2011 Aug; 77(15):5412-9. PubMed ID: 21685161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the antimicrobial compound 2,4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators.
    Couillerot O; Combes-Meynet E; Pothier JF; Bellvert F; Challita E; Poirier MA; Rohr R; Comte G; Moënne-Loccoz Y; Prigent-Combaret C
    Microbiology (Reading); 2011 Jun; 157(Pt 6):1694-1705. PubMed ID: 21273247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2,4-diacetylphloroglucinol really synonymous with higher plant protection?
    Rezzonico F; Zala M; Keel C; Duffy B; Moënne-Loccoz Y; Défago G
    New Phytol; 2007; 173(4):861-872. PubMed ID: 17286834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Pseudomonas fluorescens chemotaxis sensory proteins for malate, succinate, and fumarate, and their involvement in root colonization.
    Oku S; Komatsu A; Nakashimada Y; Tajima T; Kato J
    Microbes Environ; 2014; 29(4):413-9. PubMed ID: 25491753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The sigma factor sigma s affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5.
    Sarniguet A; Kraus J; Henkels MD; Muehlchen AM; Loper JE
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12255-9. PubMed ID: 8618880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH:ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365.
    Dekkers LC; van der Bij AJ; Mulders IH; Phoelich CC; Wentwoord RA; Glandorf DC; Wijffelman CA; Lugtenberg BJ
    Mol Plant Microbe Interact; 1998 Aug; 11(8):763-71. PubMed ID: 9675892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RpoN (sigma54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0.
    Péchy-Tarr M; Bottiglieri M; Mathys S; Lejbølle KB; Schnider-Keel U; Maurhofer M; Keel C
    Mol Plant Microbe Interact; 2005 Mar; 18(3):260-72. PubMed ID: 15782640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trichoderma harzianum enhances the production of nematicidal compounds in vitro and improves biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato.
    Siddiqui IA; Shaukat SS
    Lett Appl Microbiol; 2004; 38(2):169-75. PubMed ID: 14746551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of NADH dehydrogenases of Pseudomonas fluorescens WCS365 and their role in competitive root colonization.
    Camacho Carvajal MM; Wijfjes AH; Mulders IH; Lugtenberg BJ; Bloemberg GV
    Mol Plant Microbe Interact; 2002 Jul; 15(7):662-71. PubMed ID: 12118882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocontrol of Pythium in the pea rhizosphere by antifungal metabolite producing and non-producing Pseudomonas strains.
    Naseby DC; Way JA; Bainton NJ; Lynch JM
    J Appl Microbiol; 2001 Mar; 90(3):421-9. PubMed ID: 11298238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenylacetic acid-producing Rhizoctonia solani represses the biosynthesis of nematicidal compounds in vitro and influences biocontrol of Meloidogyne incognita in tomato by Pseudomonas fluorescens strain CHA0 and its GM derivatives.
    Siddiqui IA; Shaukat SS
    J Appl Microbiol; 2005; 98(1):43-55. PubMed ID: 15610416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.