These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 11911642)

  • 1. Dimethyl sulfide emission from waterlogged Chinese paddy soils.
    Yang Z; Kong L; Zhang J; Xi S; Chen J
    Bull Environ Contam Toxicol; 2001 Nov; 67(5):721-8. PubMed ID: 11911642
    [No Abstract]   [Full Text] [Related]  

  • 2. Methods to reduce the emission of pesticides on farm level.
    Spanoghe P; Steurbaut W
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):849-53. PubMed ID: 15151323
    [No Abstract]   [Full Text] [Related]  

  • 3. Emission of chiral organochlorine pesticides from agricultural soils in the cornbelt region of the U.S.
    Leone AD; Amato S; Falconer RL
    Environ Sci Technol; 2001 Dec; 35(23):4592-6. PubMed ID: 11770760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new paper sensor method for field analysis of acid volatile sulfides in soils.
    Pellegrini E; Contin M; Vittori Antisari L; Vianello G; Ferronato C; De Nobili M
    Environ Toxicol Chem; 2018 Dec; 37(12):3025-3031. PubMed ID: 30259571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of pesticide emission fluxes from canopy using micrometeorological methods.
    De Backer E; Samson R; Steurbaut W
    Commun Agric Appl Biol Sci; 2006; 71(1):103-6. PubMed ID: 17191484
    [No Abstract]   [Full Text] [Related]  

  • 6. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emission of biogenic sulfur gases from the microbial decomposition of cystine in Chinese rice paddy soils.
    Zhang J; Wang L; Yang Z
    Bull Environ Contam Toxicol; 2004 Apr; 72(4):850-7. PubMed ID: 15200003
    [No Abstract]   [Full Text] [Related]  

  • 8. Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering.
    Robson TC; Braungardt CB; Rieuwerts J; Worsfold P
    Environ Pollut; 2014 Jan; 184():283-9. PubMed ID: 24077256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption.
    Meharg AA; Rahman MM
    Environ Sci Technol; 2003 Jan; 37(2):229-34. PubMed ID: 12564892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfide emissions from different areas of a municipal solid waste landfill in China.
    Yue D; Han B; Sun Y; Yang T
    Waste Manag; 2014 Jun; 34(6):1041-4. PubMed ID: 23948050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partitioning and potential mobilization of aluminum, arsenic, iron, and heavy metals in tropical active and post-active acid sulfate soils: Influence of long-term paddy rice cultivation.
    Sukitprapanon T; Suddhiprakarn A; Kheoruenromne I; Gilkes RJ
    Chemosphere; 2018 Apr; 197():691-702. PubMed ID: 29407833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of rice canopy on the air-soil exchange of polycyclic aromatic hydrocarbons and organochlorine pesticides using paired passive air samplers.
    Wang Y; Wang S; Luo C; Li J; Ming L; Zhang G; Li X
    Environ Pollut; 2015 May; 200():35-41. PubMed ID: 25686886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil.
    Dittmar J; Voegelin A; Roberts LC; Hug SJ; Saha GC; Ali MA; Badruzzaman AB; Kretzschmar R
    Environ Sci Technol; 2007 Sep; 41(17):5967-72. PubMed ID: 17937268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions.
    de Livera J; McLaughlin MJ; Hettiarachchi GM; Kirby JK; Beak DG
    Sci Total Environ; 2011 Mar; 409(8):1489-97. PubMed ID: 21277005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Release of pesticides into the air and their transformation products in the soil during agricultural operations].
    Aleksandrova LG; Khokhol'nikova GA; Gromova VS
    Gig Sanit; 1986 Jul; (7):15-8. PubMed ID: 3758698
    [No Abstract]   [Full Text] [Related]  

  • 16. Air-soil exchange of mercury from background soils in the United States.
    Ericksen JA; Gustin MS; Xin M; Weisberg PJ; Fernandez GC
    Sci Total Environ; 2006 Aug; 366(2-3):851-63. PubMed ID: 16181661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volatilization behaviors of diesel oil from the soils.
    Li YY; Zheng XL; Li B; Ma YX; Cao JH
    J Environ Sci (China); 2004; 16(6):1033-6. PubMed ID: 15900744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCDD/F contamination over time in Japanese paddy soils.
    Seike N; Kashiwagi N; Otani T
    Environ Sci Technol; 2007 Apr; 41(7):2210-5. PubMed ID: 17438765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polychlorinated naphthalenes (PCNs) in the surface soils of the Pearl River Delta, South China: distribution, sources, and air-soil exchange.
    Wang Y; Cheng Z; Li J; Luo C; Xu Y; Li Q; Liu X; Zhang G
    Environ Pollut; 2012 Nov; 170():1-7. PubMed ID: 22750244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of arsenic pollution with reference to paddy cultivation in the middle Indo-Gangetic Plains.
    Srivastava PK; Singh M; Gupta M; Singh N; Kharwar RN; Tripathi RD; Nautiyal CS
    Environ Monit Assess; 2015 Apr; 187(4):198. PubMed ID: 25796519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.