These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Modulation of prion protein oligomerization, aggregation, and beta-sheet conversion by 4,4'-dianilino-1,1'-binaphthyl-5,5'-sulfonate (bis-ANS). Cordeiro Y; Lima LM; Gomes MP; Foguel D; Silva JL J Biol Chem; 2004 Feb; 279(7):5346-52. PubMed ID: 14634010 [TBL] [Abstract][Full Text] [Related]
7. Prion protein amyloid formation under native-like conditions involves refolding of the C-terminal alpha-helical domain. Cobb NJ; Apetri AC; Surewicz WK J Biol Chem; 2008 Dec; 283(50):34704-11. PubMed ID: 18930924 [TBL] [Abstract][Full Text] [Related]
8. Formation of soluble oligomers and amyloid fibrils with physical properties of the scrapie isoform of the prion protein from the C-terminal domain of recombinant murine prion protein mPrP-(121-231). Martins SM; Frosoni DJ; Martinez AM; De Felice FG; Ferreira ST J Biol Chem; 2006 Sep; 281(36):26121-8. PubMed ID: 16844683 [TBL] [Abstract][Full Text] [Related]
9. Self-assembly of recombinant prion protein of 106 residues. Baskakov IV; Aagaard C; Mehlhorn I; Wille H; Groth D; Baldwin MA; Prusiner SB; Cohen FE Biochemistry; 2000 Mar; 39(10):2792-804. PubMed ID: 10704232 [TBL] [Abstract][Full Text] [Related]
10. Annealing prion protein amyloid fibrils at high temperature results in extension of a proteinase K-resistant core. Bocharova OV; Makarava N; Breydo L; Anderson M; Salnikov VV; Baskakov IV J Biol Chem; 2006 Jan; 281(4):2373-9. PubMed ID: 16314415 [TBL] [Abstract][Full Text] [Related]
11. Shaking alone induces de novo conversion of recombinant prion proteins to β-sheet rich oligomers and fibrils. Ladner-Keay CL; Griffith BJ; Wishart DS PLoS One; 2014; 9(6):e98753. PubMed ID: 24892647 [TBL] [Abstract][Full Text] [Related]
12. A valine-to-lysine substitution at position 210 induces structural conversion of prion protein into a β-sheet rich oligomer. Kakuda K; Yamaguchi KI; Kuwata K; Honda R Biochem Biophys Res Commun; 2018 Nov; 506(1):81-86. PubMed ID: 30336980 [TBL] [Abstract][Full Text] [Related]
13. A new mechanism for transmissible prion diseases. Makarava N; Kovacs GG; Savtchenko R; Alexeeva I; Ostapchenko VG; Budka H; Rohwer RG; Baskakov IV J Neurosci; 2012 May; 32(21):7345-55. PubMed ID: 22623680 [TBL] [Abstract][Full Text] [Related]
14. Molecular model of an alpha-helical prion protein dimer and its monomeric subunits as derived from chemical cross-linking and molecular modeling calculations. Kaimann T; Metzger S; Kuhlmann K; Brandt B; Birkmann E; Höltje HD; Riesner D J Mol Biol; 2008 Feb; 376(2):582-96. PubMed ID: 18158160 [TBL] [Abstract][Full Text] [Related]
15. Mammalian prion protein (PrP) forms conformationally different amyloid intracellular aggregates in bacteria. Macedo B; Sant'Anna R; Navarro S; Cordeiro Y; Ventura S Microb Cell Fact; 2015 Nov; 14():174. PubMed ID: 26536866 [TBL] [Abstract][Full Text] [Related]
16. N-terminal domain of prion protein directs its oligomeric association. Trevitt CR; Hosszu LL; Batchelor M; Panico S; Terry C; Nicoll AJ; Risse E; Taylor WA; Sandberg MK; Al-Doujaily H; Linehan JM; Saibil HR; Scott DJ; Collinge J; Waltho JP; Clarke AR J Biol Chem; 2014 Sep; 289(37):25497-508. PubMed ID: 25074940 [TBL] [Abstract][Full Text] [Related]
17. Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange. Lu X; Wintrode PL; Surewicz WK Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1510-5. PubMed ID: 17242357 [TBL] [Abstract][Full Text] [Related]
18. Dual nature of the infectious prion protein revealed by high pressure. Garcia AF; Heindl P; Voigt H; Büttner M; Butz P; Tauber N; Tauscher B; Pfaff E J Biol Chem; 2005 Mar; 280(11):9842-7. PubMed ID: 15598650 [TBL] [Abstract][Full Text] [Related]
19. How does domain replacement affect fibril formation of the rabbit/human prion proteins. Yan X; Huang JJ; Zhou Z; Chen J; Liang Y PLoS One; 2014; 9(11):e113238. PubMed ID: 25401497 [TBL] [Abstract][Full Text] [Related]