These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 1191267)

  • 21. Elongation of fatty acids by microsomal fractions from the brain of the developing rat.
    Brophy PJ; Vance DE
    Biochem J; 1975 Dec; 152(3):495-501. PubMed ID: 818998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The mode of activation and regulation of glutaminase in intact kidney mitochondria.
    Kovacević Z
    Curr Probl Clin Biochem; 1976; 6():357-70. PubMed ID: 187383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fatty acids and anionic phospholipids alter the palmitoyl coenzyme A kinetics of hepatic monoacylglycerol acyltransferase in Triton X-100 mixed micelles.
    Coleman RA; Wang P; Bhat BG
    Biochemistry; 1996 Jul; 35(29):9576-83. PubMed ID: 8755739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlation between activation and dimer formation of rat renal phosphate-dependent glutaminase.
    Godfrey S; Kuhlenschmidt T; Curthoys P
    J Biol Chem; 1977 Mar; 252(6):1927-31. PubMed ID: 845154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the mechanism of malonyl-CoA-independent fatty-acid synthesis. Characterization of the mitochondrial chain-elongating system of rat liver and pig-kidney cortex.
    Hinsch W; Seubert W
    Eur J Biochem; 1975 May; 53(2):437-47. PubMed ID: 237759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of chloromethyl ketone derivatives of fatty acids. Their use as specific inhibitors of acetoacetyl-coenzyme A thiolase, cholesterol biosynthesis and fatty acid synthesis.
    Bloxham DP; Chalkley RA; Coghlin SJ; Salam W
    Biochem J; 1978 Dec; 175(3):999-1011. PubMed ID: 33667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The substrate specificity of carnitine acetyltransferase.
    Chase JF
    Biochem J; 1967 Aug; 104(2):510-8. PubMed ID: 6069132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The significance of the attachment of rat kidney glutaminase to the inner mitochondrial membrane.
    Strzelecki T; Schoolwerth AC
    Biochim Biophys Acta; 1984 Oct; 801(3):334-41. PubMed ID: 6487648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Factors which affect the activity of purified rat liver acyl-CoA oxidase.
    Hovik R; Osmundsen H
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):97-102. PubMed ID: 8439301
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition by glutamate of phosphate-dependent glutaminase of rat kidney.
    Shapiro RA; Morehouse RF; Curthoys NP
    Biochem J; 1982 Dec; 207(3):561-6. PubMed ID: 6131666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of long-chain acyl-coenzyme A's on the activity of the soluble form of nicotinamide adenine dinucleotide phosphate-specific isocitrate dehydrogenase from lactating bovine mammary gland.
    Farrell HM; Wickham ED; Reeves HC
    Arch Biochem Biophys; 1995 Aug; 321(1):199-208. PubMed ID: 7639521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modification of an arginine residue in pig kidney general acyl-coenzyme A dehydrogenase by cyclohexane-1,2-dione.
    Jiang ZY; Thorpe C
    Biochem J; 1982 Dec; 207(3):415-9. PubMed ID: 7165702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-dependent activation and inactivation of pig brain glutaminase.
    Nimmo GA; Tipton KF
    Biochem Pharmacol; 1981 Jun; 30(12):1635-41. PubMed ID: 7271850
    [No Abstract]   [Full Text] [Related]  

  • 34. Effect of estradiol and progesterone on long chain fatty acyl-coenzyme A levels in the rat uterus.
    Young AJ; Barker KL
    Biochim Biophys Acta; 1991 Apr; 1092(2):211-7. PubMed ID: 2018788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for two species of mammalian phosphate-activated glutaminase having different regulatory properties.
    Kvamme E; Olsen BE
    FEBS Lett; 1979 Nov; 107(1):33-6. PubMed ID: 499555
    [No Abstract]   [Full Text] [Related]  

  • 36. Inhibitory effect of very-long-chain monounsaturated fatty-acyl-CoAs on the elongation of long-chain fatty acid in swine cerebral microsomes.
    Saitoh T; Yoshida S; Takeshita M
    Biochim Biophys Acta; 1988 Jun; 960(3):410-6. PubMed ID: 3382682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Renal glutaminase in postnatal and adult rats.
    Franklin C; Goldstein L
    Enzyme; 1975; 19(4):212-24. PubMed ID: 236175
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tetraphenylboron - a potent activator of kidney mitochondrial glutaminase.
    Kovaĉević Z
    FEBS Lett; 1976 Jun; 65(2):179-82. PubMed ID: 1278419
    [No Abstract]   [Full Text] [Related]  

  • 39. Differential effects of fatty acyl coenzyme A derivatives on citrate synthase and glutamate dehydrogenase.
    Lai JC; Liang BB; Jarvi EJ; Cooper AJ; Lu DR
    Res Commun Chem Pathol Pharmacol; 1993 Dec; 82(3):331-8. PubMed ID: 8122033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of the phosphate-dependent glutaminase obtained from rat brain and kidney.
    Haser WG; Shapiro RA; Curthoys NP
    Biochem J; 1985 Jul; 229(2):399-408. PubMed ID: 3899104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.