These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 11912671)
21. Neuroprotection and functional recovery after application of the caspase-9 inhibitor z-LEHD-fmk in a rat model of traumatic spinal cord injury. Colak A; Karaoğlan A; Barut S; Köktürk S; Akyildiz AI; Taşyürekli M J Neurosurg Spine; 2005 Mar; 2(3):327-34. PubMed ID: 15796358 [TBL] [Abstract][Full Text] [Related]
22. Morphological characterization of photochemical graded spinal cord injury in the rat. Verdú E; García-Alías G; Forés J; Vela JM; Cuadras J; López-Vales R; Navarro X J Neurotrauma; 2003 May; 20(5):483-99. PubMed ID: 12803980 [TBL] [Abstract][Full Text] [Related]
23. Differential activation of astrocytes and microglia after spinal cord injury in the fetal rat. Fujimoto Y; Yamasaki T; Tanaka N; Mochizuki Y; Kajihara H; Ikuta Y; Ochi M Eur Spine J; 2006 Feb; 15(2):223-33. PubMed ID: 16292632 [TBL] [Abstract][Full Text] [Related]
24. Experimental spinal cord injury: Wallerian degeneration in the dorsal column is followed by revascularization, glial proliferation, and nerve regeneration. Zhang Z; Guth L Exp Neurol; 1997 Sep; 147(1):159-71. PubMed ID: 9294413 [TBL] [Abstract][Full Text] [Related]
25. Connexin43 and astrocytic gap junctions in the rat spinal cord after acute compression injury. Theriault E; Frankenstein UN; Hertzberg EL; Nagy JI J Comp Neurol; 1997 Jun; 382(2):199-214. PubMed ID: 9183689 [TBL] [Abstract][Full Text] [Related]
26. Spatiotemporal CCR1, CCL3(MIP-1α), CXCR4, CXCL12(SDF-1α) expression patterns in a rat spinal cord injury model of posttraumatic neuropathic pain. Knerlich-Lukoschus F; von der Ropp-Brenner B; Lucius R; Mehdorn HM; Held-Feindt J J Neurosurg Spine; 2011 May; 14(5):583-97. PubMed ID: 21332278 [TBL] [Abstract][Full Text] [Related]
27. Functional consequences of lumbar spinal cord contusion injuries in the adult rat. Magnuson DS; Lovett R; Coffee C; Gray R; Han Y; Zhang YP; Burke DA J Neurotrauma; 2005 May; 22(5):529-43. PubMed ID: 15892599 [TBL] [Abstract][Full Text] [Related]
28. An efficient device to experimentally model compression injury of mammalian spinal cord. Ropper AE; Zeng X; Anderson JE; Yu D; Han I; Haragopal H; Teng YD Exp Neurol; 2015 Sep; 271():515-23. PubMed ID: 26210871 [TBL] [Abstract][Full Text] [Related]
29. Endothelial cell loss is not a major cause of neuronal and glial cell death following contusion injury of the spinal cord. Casella GT; Bunge MB; Wood PM Exp Neurol; 2006 Nov; 202(1):8-20. PubMed ID: 16872600 [TBL] [Abstract][Full Text] [Related]
30. Combined Strategy for a Reliable Evaluation of Spinal Cord Injury Using an in vivo Model. Gomez RM; Ghotme K; Nino JJ; Quiroz-Padilla M; Vargas D; Dominguez AR; Barreto GE; Sanchez MY Cent Nerv Syst Agents Med Chem; 2018 Jan; 18(1):49-57. PubMed ID: 26285903 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of the anatomical and functional consequences of repetitive mild cervical contusion using a model of spinal concussion. Jin Y; Bouyer J; Haas C; Fischer I Exp Neurol; 2015 Sep; 271():175-88. PubMed ID: 26070306 [TBL] [Abstract][Full Text] [Related]
32. Perfusion imaging of spinal cord contusion: injury-induced blockade and partial reversal by β2-agonist treatment in rats. Brown A; Nabel A; Oh W; Etlinger JD; Zeman RJ J Neurosurg Spine; 2014 Feb; 20(2):164-71. PubMed ID: 24313676 [TBL] [Abstract][Full Text] [Related]
33. Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats. Gensel JC; Tovar CA; Hamers FP; Deibert RJ; Beattie MS; Bresnahan JC J Neurotrauma; 2006 Jan; 23(1):36-54. PubMed ID: 16430371 [TBL] [Abstract][Full Text] [Related]
34. Behavioral, histological, and ex vivo magnetic resonance imaging assessment of graded contusion spinal cord injury in mice. Nishi RA; Liu H; Chu Y; Hamamura M; Su MY; Nalcioglu O; Anderson AJ J Neurotrauma; 2007 Apr; 24(4):674-89. PubMed ID: 17439350 [TBL] [Abstract][Full Text] [Related]
35. Rapid functional recovery after spinal cord injury in young rats. Brown KM; Wolfe BB; Wrathall JR J Neurotrauma; 2005 May; 22(5):559-74. PubMed ID: 15892601 [TBL] [Abstract][Full Text] [Related]
36. Neuroprotective effects of basic fibroblast growth factor following spinal cord contusion injury in the rat. Lee TT; Green BA; Dietrich WD; Yezierski RP J Neurotrauma; 1999 May; 16(5):347-56. PubMed ID: 10369555 [TBL] [Abstract][Full Text] [Related]
37. A neuroprotective role of glial cell line-derived neurotrophic factor following moderate spinal cord contusion injury. Iannotti C; Ping Zhang Y; Shields CB; Han Y; Burke DA; Xu XM Exp Neurol; 2004 Oct; 189(2):317-32. PubMed ID: 15380482 [TBL] [Abstract][Full Text] [Related]
38. Spinal cord injury in the rat: treatment with bacterial lipopolysaccharide and indomethacin enhances cellular repair and locomotor function. Guth L; Zhang Z; DiProspero NA; Joubin K; Fitch MT Exp Neurol; 1994 Mar; 126(1):76-87. PubMed ID: 8157128 [TBL] [Abstract][Full Text] [Related]
39. A quantitative spatial analysis of the blood-spinal cord barrier. I. Permeability changes after experimental spinal contusion injury. Popovich PG; Horner PJ; Mullin BB; Stokes BT Exp Neurol; 1996 Dec; 142(2):258-75. PubMed ID: 8934558 [TBL] [Abstract][Full Text] [Related]
40. Postmortem magnetic resonance imaging of experimental spinal cord injury: magnetic resonance findings versus in vivo functional deficit. Hackney DB; Finkelstein SD; Hand CM; Markowitz RS; Black P Neurosurgery; 1994 Dec; 35(6):1104-11. PubMed ID: 7885555 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]