BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 11913134)

  • 21. [Kinetic study of the role of molybdenum in the active center of xanthine oxidase].
    Kozachenko AI; Vartanian LS; Gonikberg EM
    Biokhimiia; 1971; 36(1):27-32. PubMed ID: 5109077
    [No Abstract]   [Full Text] [Related]  

  • 22. Nature of the catalytically labile oxygen at the active site of xanthine oxidase.
    Doonan CJ; Stockert A; Hille R; George GN
    J Am Chem Soc; 2005 Mar; 127(12):4518-22. PubMed ID: 15783235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Molybdenum: the indispensable trace element].
    Elbowicz-Waniewska Z
    Pol Tyg Lek; 1973 May; 28(18):662-4. PubMed ID: 4574612
    [No Abstract]   [Full Text] [Related]  

  • 24. Molybdenum requirement for bacterial xanthine dehydrogenase activity.
    Mitidieri E; Affonso OR
    Biochim Biophys Acta; 1965 Aug; 105(2):371-3. PubMed ID: 4954639
    [No Abstract]   [Full Text] [Related]  

  • 25. Remarkably fast and selective aromatization of Hantzsch esters with MoOCl4 and MoCl5: a chemical model for possible biologically relevant properties of molybdenum-containing enzymes.
    Litvić M; Regović M; Smic K; Lovrić M; Filipan-Litvić M
    Bioorg Med Chem Lett; 2012 Jun; 22(11):3676-81. PubMed ID: 22546670
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The inorganic biochemistry of molybdoenzymes.
    Bray RC
    Q Rev Biophys; 1988 Aug; 21(3):299-329. PubMed ID: 3065813
    [No Abstract]   [Full Text] [Related]  

  • 27. Direct electron transfer of xanthine oxidase and its catalytic reduction to nitrate.
    Wu Y; Hu S
    Anal Chim Acta; 2007 Oct; 602(2):181-6. PubMed ID: 17933602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Studies on the mechanism of action of xanthine oxidase.
    Choi EY; Stockert AL; Leimkühler S; Hille R
    J Inorg Biochem; 2004 May; 98(5):841-8. PubMed ID: 15134930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reversible interconversion between sulfo and desulfo xanthine dehydrogenase.
    Nishino T
    Adv Exp Med Biol; 1986; 195 Pt B():259-62. PubMed ID: 3464162
    [No Abstract]   [Full Text] [Related]  

  • 30. Use of density functional calculations to predict the regioselectivity of drugs and molecules metabolized by aldehyde oxidase.
    Torres RA; Korzekwa KR; McMasters DR; Fandozzi CM; Jones JP
    J Med Chem; 2007 Sep; 50(19):4642-7. PubMed ID: 17718551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive study of bioanalytical platforms: xanthine oxidase.
    Casero E; de Quesada AM; Jin J; Quintana MC; Pariente F; Abruña HD; Vázquez L; Lorenzo E
    Anal Chem; 2006 Jan; 78(2):530-7. PubMed ID: 16408936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies of vanadium toxicity in the rat. Lack of correlation with molybdenum utilization.
    Johnson JL; Cohen HJ; Rajagopalan KV
    Biochem Biophys Res Commun; 1974 Feb; 56(4):940-6. PubMed ID: 4363644
    [No Abstract]   [Full Text] [Related]  

  • 33. The Journal of Biological Chemistry, Volume 203, 1953: Isolation and identification of the xanthine oxidase factor as molybdenum. By Dan A. Richert and W. W. Westerfeld.
    Richert DA; Westerfeld WW
    Nutr Rev; 1987 Nov; 45(11):342-3. PubMed ID: 3332710
    [No Abstract]   [Full Text] [Related]  

  • 34. QSAR and SAR studies on the reduction of some aromatic nitro compounds by xanthine oxidase.
    Thakur M; Thakur A; Balasubramanian K
    J Chem Inf Model; 2006; 46(1):103-10. PubMed ID: 16426045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescence quenching study of quercetin interaction with bovine milk xanthine oxidase.
    Rasoulzadeh F; Jabary HN; Naseri A; Rashidi MR
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Feb; 72(1):190-3. PubMed ID: 19028136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two mutations convert mammalian xanthine oxidoreductase to highly superoxide-productive xanthine oxidase.
    Asai R; Nishino T; Matsumura T; Okamoto K; Igarashi K; Pai EF; Nishino T
    J Biochem; 2007 Apr; 141(4):525-34. PubMed ID: 17301076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of N-aryl-5-amino-4-cyanopyrazole derivatives as potent xanthine oxidase inhibitors.
    Gupta S; Rodrigues LM; Esteves AP; Oliveira-Campos AM; Nascimento MS; Nazareth N; Cidade H; Neves MP; Fernandes E; Pinto M; Cerqueira NM; Brás N
    Eur J Med Chem; 2008 Apr; 43(4):771-80. PubMed ID: 17692432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biologically relevant O,S-donor compounds. Synthesis, molybdenum complexation and xanthine oxidase inhibition.
    Chaves S; Gil M; Canário S; Jelic R; Romão MJ; Trincão J; Herdtweck E; Sousa J; Diniz C; Fresco P; Santos MA
    Dalton Trans; 2008 Apr; (13):1773-82. PubMed ID: 18354776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidation reaction by xanthine oxidase: theoretical study of reaction mechanism.
    Amano T; Ochi N; Sato H; Sakaki S
    J Am Chem Soc; 2007 Jul; 129(26):8131-8. PubMed ID: 17564439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nox2-containing NADPH oxidase and xanthine oxidase are sources of superoxide in mouse trachea.
    Westover A; Harrison CB; Selemidis S
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):331-3. PubMed ID: 19076165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.