These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 11913134)

  • 41. Age-related increase in xanthine oxidase activity in human plasma and rat tissues.
    Aranda R; Doménech E; Rus AD; Real JT; Sastre J; Viña J; Pallardó FV
    Free Radic Res; 2007 Nov; 41(11):1195-200. PubMed ID: 17906999
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contribution of aldehyde oxidase, xanthine oxidase, and aldehyde dehydrogenase on the oxidation of aromatic aldehydes.
    Panoutsopoulos GI; Kouretas D; Beedham C
    Chem Res Toxicol; 2004 Oct; 17(10):1368-76. PubMed ID: 15487898
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nature of the oxomolybdenum-thiolate pi-bond: implications for Mo-S bonding in sulfite oxidase and xanthine oxidase.
    McNaughton RL; Helton ME; Cosper MM; Enemark JH; Kirk ML
    Inorg Chem; 2004 Mar; 43(5):1625-37. PubMed ID: 14989655
    [TBL] [Abstract][Full Text] [Related]  

  • 44. S-adenosylmethionine and radical-based catalysis.
    Grillo MA; Colombatto S
    Amino Acids; 2007 Feb; 32(2):197-202. PubMed ID: 16738799
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microvascular display of xanthine oxidase and NADPH oxidase in the spontaneously hypertensive rat.
    DeLano FA; Parks DA; Ruedi JM; Babior BM; Schmid-Schönbein GW
    Microcirculation; 2006; 13(7):551-66. PubMed ID: 16990214
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Xanthine oxidase activity in transplantable Guerin's carcinoma in rats].
    Shmarakov IA; Marchenko MM
    Vopr Onkol; 2009; 55(3):345-50. PubMed ID: 19670736
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetic, structural, and EPR studies reveal that aldehyde oxidoreductase from Desulfovibrio gigas does not need a sulfido ligand for catalysis and give evidence for a direct Mo-C interaction in a biological system.
    Santos-Silva T; Ferroni F; Thapper A; Marangon J; González PJ; Rizzi AC; Moura I; Moura JJ; Romão MJ; Brondino CD
    J Am Chem Soc; 2009 Jun; 131(23):7990-8. PubMed ID: 19459677
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate.
    Yamaguchi Y; Matsumura T; Ichida K; Okamoto K; Nishino T
    J Biochem; 2007 Apr; 141(4):513-24. PubMed ID: 17301077
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Xanthine oxidase-dependent ROS production mediates vitamin A pro-oxidant effects in cultured Sertoli cells.
    Zanotto-Filho A; Schröder R; Moreira JC
    Free Radic Res; 2008 Jun; 42(6):593-601. PubMed ID: 18569017
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Activity detection and immunohistochemistry study on xanthine oxidase in pathological scars].
    Li WR; Cen Y; Li XH; Liao DY
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2008 Mar; 39(2):243-6. PubMed ID: 18630693
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molybdenum and tungsten enzymes: a crystallographic and mechanistic overview.
    Romão MJ
    Dalton Trans; 2009 Jun; (21):4053-68. PubMed ID: 19452052
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Age-related changes in superoxide dismutase, glutathione peroxidase, catalase and xanthine oxidoreductase/xanthine oxidase activities in the rabbit cornea.
    Cejková J; Vejrazka M; Pláteník J; Stípek S
    Exp Gerontol; 2004 Oct; 39(10):1537-43. PubMed ID: 15501024
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Amperometric biosensor for xanthine with supramolecular architecture.
    Villalonga R; Camacho C; Cao R; Hernández J; Matías JC
    Chem Commun (Camb); 2007 Mar; (9):942-4. PubMed ID: 17311128
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Xanthine oxidase and aldehyde oxidase: a simple procedure for the simultaneous purification from rat liver.
    Maia L; Mira L
    Arch Biochem Biophys; 2002 Apr; 400(1):48-53. PubMed ID: 11913970
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Peroxynitrite formation from the simultaneous reduction of nitrite and oxygen by xanthine oxidase.
    Millar TM
    FEBS Lett; 2004 Mar; 562(1-3):129-33. PubMed ID: 15044013
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unusual oxidation of phosphines employing water as the oxygen atom source and tris(benzene-1,2-dithiolate)molybdenum(VI) as the oxidant. A functional molybdenum hydroxylase analogue system.
    Cervilla A; Pérez-Pla F; Llopis E; Piles M
    Inorg Chem; 2006 Sep; 45(18):7357-66. PubMed ID: 16933938
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Distribution of the xanthine oxidase factor (molybdenum) in foods.
    WESTERFELD WW; RICHERT DA
    J Nutr; 1953 Sep; 51(1):85-95. PubMed ID: 13097228
    [No Abstract]   [Full Text] [Related]  

  • 58. Role of xanthine oxidase in small bowel mucosal dysfunction after surgical stress.
    Watkins PE
    Br J Surg; 2001 Jan; 88(1):152-3. PubMed ID: 11136336
    [No Abstract]   [Full Text] [Related]  

  • 59. The xanthine oxidase factor (molybdenum).
    WESTERFELD WW; RICHERT DA
    Ann N Y Acad Sci; 1954 May; 57(6):896-904. PubMed ID: 13181320
    [No Abstract]   [Full Text] [Related]  

  • 60. Evidence that molybdenum is a nondialyzable component of xanthine oxidase.
    TOTTER JR; BURNETT WT; MONROE RA; WHITNEY IB; COMAR CL
    Science; 1953 Nov; 118(3071):555. PubMed ID: 13113177
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.