These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 11913378)

  • 1. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: applications to the molecular systems and geometric objects.
    Rocchia W; Sridharan S; Nicholls A; Alexov E; Chiabrera A; Honig B
    J Comput Chem; 2002 Jan; 23(1):128-37. PubMed ID: 11913378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On removal of charge singularity in Poisson-Boltzmann equation.
    Cai Q; Wang J; Zhao HK; Luo R
    J Chem Phys; 2009 Apr; 130(14):145101. PubMed ID: 19368474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new outer boundary formulation and energy corrections for the nonlinear Poisson-Boltzmann equation.
    Boschitsch AH; Fenley MO
    J Comput Chem; 2007 Apr; 28(5):909-21. PubMed ID: 17238171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution of the nonlinear Poisson-Boltzmann equation using pseudo-transient continuation and the finite element method.
    Shestakov AI; Milovich JL; Noy A
    J Colloid Interface Sci; 2002 Mar; 247(1):62-79. PubMed ID: 16290441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly accurate biomolecular electrostatics in continuum dielectric environments.
    Zhou YC; Feig M; Wei GW
    J Comput Chem; 2008 Jan; 29(1):87-97. PubMed ID: 17508411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling salt-mediated electrostatics of macromolecules: the discrete surface charge optimization algorithm and its application to the nucleosome.
    Beard DA; Schlick T
    Biopolymers; 2001 Jan; 58(1):106-15. PubMed ID: 11072233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo-based linear Poisson-Boltzmann approach makes accurate salt-dependent solvation free energy predictions possible.
    Simonov NA; Mascagni M; Fenley MO
    J Chem Phys; 2007 Nov; 127(18):185105. PubMed ID: 18020668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of Molecules on a Charged Polarizable Surface in an Electrolyte.
    Wilson WD; Schaldach CM
    J Colloid Interface Sci; 1998 Dec; 208(2):546-554. PubMed ID: 9845699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuum description of ionic and dielectric shielding for molecular-dynamics simulations of proteins in solution.
    Egwolf B; Tavan P
    J Chem Phys; 2004 Jan; 120(4):2056-68. PubMed ID: 15268342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution.
    Lu B; Zhou YC; Huber GA; Bond SD; Holst MJ; McCammon JA
    J Chem Phys; 2007 Oct; 127(13):135102. PubMed ID: 17919055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy.
    Guvench O; Weiser J; Shenkin P; Kolossváry I; Still WC
    J Comput Chem; 2002 Jan; 23(2):214-21. PubMed ID: 11924735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of electrostatic effects in proteins: multigrid-based Newton iterative method for solution of the full nonlinear Poisson-Boltzmann equation.
    Holst M; Kozack RE; Saied F; Subramaniam S
    Proteins; 1994 Mar; 18(3):231-45. PubMed ID: 8202464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved pairwise decomposable finite-difference Poisson-Boltzmann method for computational protein design.
    Vizcarra CL; Zhang N; Marshall SA; Wingreen NS; Zeng C; Mayo SL
    J Comput Chem; 2008 May; 29(7):1153-62. PubMed ID: 18074340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical determination of the standard reduction potentials of pheophytin-a in N,N-dimethyl formamide and membrane.
    Mehta N; Datta SN
    J Phys Chem B; 2007 Jun; 111(25):7210-7. PubMed ID: 17536851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge-dependent cavity radii for an accurate dielectric continuum model of solvation with emphasis on ions: aqueous solutes with oxo, hydroxo, amino, methyl, chloro, bromo, and fluoro functionalities.
    Ginovska B; Camaioni DM; Dupuis M; Schwerdtfeger CA; Gil Q
    J Phys Chem A; 2008 Oct; 112(42):10604-13. PubMed ID: 18816107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids.
    Boschitsch AH; Fenley MO
    J Chem Theory Comput; 2011 May; 7(5):1524-1540. PubMed ID: 21984876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of charge singularities in implicit solvent models.
    Geng W; Yu S; Wei G
    J Chem Phys; 2007 Sep; 127(11):114106. PubMed ID: 17887827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boundary element solution of the linear Poisson-Boltzmann equation and a multipole method for the rapid calculation of forces on macromolecules in solution.
    Bordner AJ; Huber GA
    J Comput Chem; 2003 Feb; 24(3):353-67. PubMed ID: 12548727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of solvation free energy from quantum mechanical charge density and continuum dielectric theory.
    Wang M; Wong CF
    J Phys Chem A; 2006 Apr; 110(14):4873-9. PubMed ID: 16599457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.