These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 11913379)
21. A reduced protein model with accurate native-structure identification ability. Betancourt MR Proteins; 2003 Dec; 53(4):889-907. PubMed ID: 14635131 [TBL] [Abstract][Full Text] [Related]
22. Improving protein structure prediction with model-based search. Brunette TJ; Brock O Bioinformatics; 2005 Jun; 21 Suppl 1():i66-74. PubMed ID: 15961500 [TBL] [Abstract][Full Text] [Related]
23. Water mediation in protein folding and molecular recognition. Levy Y; Onuchic JN Annu Rev Biophys Biomol Struct; 2006; 35():389-415. PubMed ID: 16689642 [TBL] [Abstract][Full Text] [Related]
24. Exploring folding free energy landscapes using computational protein design. Kuhlman B; Baker D Curr Opin Struct Biol; 2004 Feb; 14(1):89-95. PubMed ID: 15102454 [TBL] [Abstract][Full Text] [Related]
25. How well can we predict native contacts in proteins based on decoy structures and their energies? Zhu J; Zhu Q; Shi Y; Liu H Proteins; 2003 Sep; 52(4):598-608. PubMed ID: 12910459 [TBL] [Abstract][Full Text] [Related]
26. An introduction to protein contact prediction. Hamilton N; Huber T Methods Mol Biol; 2008; 453():87-104. PubMed ID: 18712298 [TBL] [Abstract][Full Text] [Related]
27. Topography of the free-energy landscape probed via mechanical unfolding of proteins. Kirmizialtin S; Huang L; Makarov DE J Chem Phys; 2005 Jun; 122(23):234915. PubMed ID: 16008495 [TBL] [Abstract][Full Text] [Related]
28. Uncover the conserved property underlying sequence-distant and structure-similar proteins. Gao J; Li Z Biopolymers; 2010 Apr; 93(4):340-7. PubMed ID: 19890963 [TBL] [Abstract][Full Text] [Related]
29. A minima hopping study of all-atom protein folding and structure prediction. Roy S; Goedecker S; Field MJ; Penev E J Phys Chem B; 2009 May; 113(20):7315-21. PubMed ID: 19391598 [TBL] [Abstract][Full Text] [Related]
30. Evolved cellular automata for protein secondary structure prediction imitate the determinants for folding observed in nature. Chopra P; Bender A In Silico Biol; 2007; 7(1):87-93. PubMed ID: 17688429 [TBL] [Abstract][Full Text] [Related]
31. Combining local-structure, fold-recognition, and new fold methods for protein structure prediction. Karplus K; Karchin R; Draper J; Casper J; Mandel-Gutfreund Y; Diekhans M; Hughey R Proteins; 2003; 53 Suppl 6():491-6. PubMed ID: 14579338 [TBL] [Abstract][Full Text] [Related]
32. The experimental survey of protein-folding energy landscapes. Oliveberg M; Wolynes PG Q Rev Biophys; 2005 Aug; 38(3):245-88. PubMed ID: 16780604 [TBL] [Abstract][Full Text] [Related]
33. The physics and bioinformatics of binding and folding-an energy landscape perspective. Papoian GA; Wolynes PG Biopolymers; 2003 Mar; 68(3):333-49. PubMed ID: 12601793 [TBL] [Abstract][Full Text] [Related]
35. The highly cooperative folding of small naturally occurring proteins is likely the result of natural selection. Watters AL; Deka P; Corrent C; Callender D; Varani G; Sosnick T; Baker D Cell; 2007 Feb; 128(3):613-24. PubMed ID: 17289578 [TBL] [Abstract][Full Text] [Related]
36. Routes are trees: the parsing perspective on protein folding. Hockenmaier J; Joshi AK; Dill KA Proteins; 2007 Jan; 66(1):1-15. PubMed ID: 17063473 [TBL] [Abstract][Full Text] [Related]
37. Low-throughput model design of protein folding inhibitors. Broglia RA; Tiana G; Sutto L; Provasi D; Perelli V Proteins; 2007 May; 67(2):469-78. PubMed ID: 17295323 [TBL] [Abstract][Full Text] [Related]
38. Steiner minimal trees, twist angles, and the protein folding problem. Smith JM; Jang Y; Kim MK Proteins; 2007 Mar; 66(4):889-902. PubMed ID: 17173288 [TBL] [Abstract][Full Text] [Related]
39. Enhanced protein fold recognition using a structural alphabet. Deschavanne P; Tufféry P Proteins; 2009 Jul; 76(1):129-37. PubMed ID: 19089985 [TBL] [Abstract][Full Text] [Related]