These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11913470)

  • 1. Simultaneous measurements of calcium mobilization and afferent nerve activity in electroreceptor organs of anesthetized Kryptopterus bicirrhis.
    Struik ML; Steenbergen HG; Koster AS; Bretschneider F; Peters RC
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Oct; 130(3):607-13. PubMed ID: 11913470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. II. Intra-axonal recordings show initial stages of central processing.
    Bell CC
    J Neurophysiol; 1990 Feb; 63(2):303-18. PubMed ID: 2313347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between two morphological types of fibers.
    Bell CC
    J Neurophysiol; 1990 Feb; 63(2):319-32. PubMed ID: 2313348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Converging electroreceptor cells improve sensitivity and tuning.
    Peters RC; Brans RJ; Bretschneider F; Versteeg E; Went A
    Neuroscience; 1997 Nov; 81(1):297-301. PubMed ID: 9300422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroreceptor model of the weakly electric fish Gnathonemus petersii. I. The model and the origin of differences between A- and B-receptors.
    Shuai J; Kashimori Y; Kambara T
    Biophys J; 1998 Oct; 75(4):1712-26. PubMed ID: 9746513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural distribution of calcium in cutaneous electroreceptor organs of teleost fish.
    Djebar B; Bensouilah M; Denizot JP
    Biotech Histochem; 1995 Mar; 70(2):81-9. PubMed ID: 7578593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regenerative outgrowth and distribution of the electroreceptive nerve fibers in the catfish Kryptopterus.
    Roth A
    J Comp Neurol; 1993 Feb; 328(4):473-84. PubMed ID: 8429130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex recognition and neuronal coding of electric organ discharge waveform in the pulse-type weakly electric fish, Hypopomus occidentalis.
    Shumway CA; Zelick RD
    J Comp Physiol A; 1988 Aug; 163(4):465-78. PubMed ID: 3184009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise-induced transition to bursting in responses of paddlefish electroreceptor afferents.
    Neiman AB; Yakusheva TA; Russell DF
    J Neurophysiol; 2007 Nov; 98(5):2795-806. PubMed ID: 17855580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periodic firing pattern in afferent discharges from electroreceptor organs of catfish.
    Schäfer K; Braun HA; Peters RC; Bretschneider F
    Pflugers Arch; 1995 Jan; 429(3):378-85. PubMed ID: 7761261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous nerve activity and sensitivity in catfish ampullary electroreceptor organs after tetanus toxin application.
    Struik ML; Bretschneider F; Peters RC
    Pflugers Arch; 2002 Mar; 443(5-6):903-7. PubMed ID: 11889591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vincristine disturbs spontaneous firing of the afferent nerve fibre in ampullary electroreceptor organs.
    Heijmen PS; Kalmeijer D; Peters RC
    Neuroscience; 1996 May; 72(2):585-91. PubMed ID: 8737427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How do outgrowing electrosensory nerve fibers find their peripheral electroreceptor sites?
    Roth A
    Naturwissenschaften; 1994 Feb; 81(2):89-91. PubMed ID: 8145859
    [No Abstract]   [Full Text] [Related]  

  • 14. Possible involvement of the ampullary electroreceptor system in detection of frequency-modulated electrocommunication signals in Eigenmannia.
    Naruse M; Kawasaki M
    J Comp Physiol A; 1998 Nov; 183(5):543-52. PubMed ID: 9839452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic noise in spike trains of normal and denervated electroreceptor organs.
    Teunis PF; Bretschneider F; Bedaux JJ; Peters RC
    Neuroscience; 1991; 41(2-3):809-16. PubMed ID: 1870713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish: I. Morphology.
    Bell CC; Zakon H; Finger TE
    J Comp Neurol; 1989 Aug; 286(3):391-407. PubMed ID: 2768566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid degeneration of ampullary electroreceptor organs after denervation.
    Szamier RB; Bennett MV
    J Cell Biol; 1973 Feb; 56(2):466-77. PubMed ID: 4345554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The emergence of electroreceptor organs in regenerating fish skin and concurrent changes in their transduction properties.
    Teunis PF; Vredevoogd W; Weterings C; Bretschneider F; Peters RC
    Neuroscience; 1991; 45(1):205-12. PubMed ID: 1754064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ionic current model for neurons in the rat medial nucleus tractus solitarii receiving sensory afferent input.
    Schild JH; Khushalani S; Clark JW; Andresen MC; Kunze DL; Yang M
    J Physiol; 1993 Sep; 469():341-63. PubMed ID: 7505824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological demonstration of N-methyl-D-aspartate receptors at the afferent synapse of catfish electroreceptor organs.
    Andrianov GN; Bretschneider F; Peters RC
    Neuroscience; 1997 Aug; 79(4):1231-7. PubMed ID: 9219981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.