These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11913534)

  • 21. Prediction of n-octanol/water partition coefficients for polychlorinated dibenzo-p-dioxins using a general regression neural network.
    Zheng G; Huang WH; Lu XH
    Anal Bioanal Chem; 2003 Jul; 376(5):680-5. PubMed ID: 12761606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Prediction of percutaneous drug permeability using modified theoretical linear solvation energy relationship].
    Fu XC; Dai YW
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2003 Aug; 32(4):352-5. PubMed ID: 12970943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of the aqueous solubility of benzylamine salts using QSPR model.
    Tantishaiyakul V
    J Pharm Biomed Anal; 2005 Feb; 37(2):411-5. PubMed ID: 15708687
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging.
    Kim HC; Bandettini PA; Lee JH
    Neuroimage; 2019 Feb; 186():607-627. PubMed ID: 30366076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ANN modeling of the penetration across a polydimethylsiloxane membrane from theoretically derived molecular descriptors.
    Agatonovic-Kustrin S; Beresford R; Yusof AP
    J Pharm Biomed Anal; 2001 Sep; 26(2):241-54. PubMed ID: 11470201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of cytotoxicity data (CC(50)) of anti-HIV 5-phenyl-1-phenylamino-1H-imidazole derivatives by artificial neural network trained with Levenberg-Marquardt algorithm.
    Arab Chamjangali M; Beglari M; Bagherian G
    J Mol Graph Model; 2007 Jul; 26(1):360-7. PubMed ID: 17350867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of evolutionary information in prediction of aromatic-backbone NH interactions in proteins.
    Kaur H; Raghava GP
    FEBS Lett; 2004 Apr; 564(1-2):47-57. PubMed ID: 15094041
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of solubility of aliphatic alcohols using the restricted components of autocorrelation method (RCAM).
    Nohair M; Zakarya D
    J Mol Model; 2003 Dec; 9(6):365-71. PubMed ID: 12938019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulating lipophilicity of organic molecules with a back-propagation neural network.
    Devillers J; Domine D; Guillon C; Karcher W
    J Pharm Sci; 1998 Sep; 87(9):1086-90. PubMed ID: 9724559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of permeability coefficients of compounds through caco-2 cell monolayer using artificial neural network analysis.
    Değim Z
    Drug Dev Ind Pharm; 2005 Oct; 31(9):935-42. PubMed ID: 16306006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative prediction of ionization effect on human skin permeability.
    Baba H; Ueno Y; Hashida M; Yamashita F
    Int J Pharm; 2017 Apr; 522(1-2):222-233. PubMed ID: 28279739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices.
    Pan Y; Jiang J; Wang R; Cao H; Zhao J
    J Hazard Mater; 2008 Sep; 157(2-3):510-7. PubMed ID: 18280036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of spinal deformity classification with total curvature analysis and artificial neural network.
    Lin H
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):376-82. PubMed ID: 18232388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feasibility of predicting tumor motion using online data acquired during treatment and a generalized neural network optimized with offline patient tumor trajectories.
    Teo TP; Ahmed SB; Kawalec P; Alayoubi N; Bruce N; Lyn E; Pistorius S
    Med Phys; 2018 Feb; 45(2):830-845. PubMed ID: 29244902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches.
    Singh KP; Gupta S; Rai P
    Ecotoxicol Environ Saf; 2013 Sep; 95():221-33. PubMed ID: 23764236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of the electrophoretic mobilities of some carboxylic acids from theoretically derived descriptors.
    Fatemi MH
    J Chromatogr A; 2004 Jun; 1038(1-2):231-7. PubMed ID: 15233538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor.
    Pandey DS; Das S; Pan I; Leahy JJ; Kwapinski W
    Waste Manag; 2016 Dec; 58():202-213. PubMed ID: 27590092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple model for the prediction of corneal permeability.
    Fu XC; Liang WQ
    Int J Pharm; 2002 Jan; 232(1-2):193-7. PubMed ID: 11790503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Artificial Neural Networks for differential diagnosis of breast lesions in MR-Mammography: a systematic approach addressing the influence of network architecture on diagnostic performance using a large clinical database.
    Dietzel M; Baltzer PA; Dietzel A; Zoubi R; Gröschel T; Burmeister HP; Bogdan M; Kaiser WA
    Eur J Radiol; 2012 Jul; 81(7):1508-13. PubMed ID: 21459533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The application and limitations of mathematical modelling in the prediction of permeability across mammalian skin and polydimethylsiloxane membranes.
    Moss GP; Sun Y; Wilkinson SC; Davey N; Adams R; Martin GP; Prapopopolou M; Brown MB
    J Pharm Pharmacol; 2011 Nov; 63(11):1411-27. PubMed ID: 21988422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.