These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1191380)

  • 1. Effect of electrical stimulation on the tensile strength of the porous implant and bone interface.
    Park JB; Kenner GH
    Biomater Med Devices Artif Organs; 1975; 3(2):233-43. PubMed ID: 1191380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical stimulation of bone growth into porous A12O3.
    Weinstein AM; Klawitter JJ; Cleveland TW
    J Biomed Mater Res; 1976 Mar; 10(2):231-47. PubMed ID: 1254614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of electrical stimulation on the interfacial tensile strength and amount of bone formation.
    Park JB; Kenner GH
    Biomater Med Devices Artif Organs; 1976; 4(2):225-33. PubMed ID: 938713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of direct electrical current stimulation on the bone/porous metallic implant interface.
    Salman NN; Park JB
    Biomaterials; 1980 Oct; 1(4):209-13. PubMed ID: 7470576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of the electrically stimulated callus. An experiment with constant direct current in rabbit fibulae.
    Akai M; Yabuki T; Tateishi T; Shirasaki Y
    Clin Orthop Relat Res; 1984 Sep; (188):293-302. PubMed ID: 6467723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of electric potentials on plated bones.
    Weigert M; Werhahn C
    Clin Orthop Relat Res; 1977 May; (124):20-30. PubMed ID: 598077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dental implant fixation by electrically mediated process. II. Tissue ingrowth.
    Park JB; Young SO; Kenner GH; von Recum AF; Myers BR; Moore RR
    Biomater Med Devices Artif Organs; 1978; 6(4):291-303. PubMed ID: 749940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of tricalcium phosphate or electrical stimulation to enhance the bone-porous implant interface.
    Berry JL; Geiger JM; Moran JM; Skraba JS; Greenwald AS
    J Biomed Mater Res; 1986 Jan; 20(1):65-77. PubMed ID: 3949824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Experimental histopathological studies of electrical callus formation and mechanism of bone healing by direct micro-electrical current].
    Kondo J
    Nihon Seikeigeka Gakkai Zasshi; 1985 Aug; 59(8):803-17. PubMed ID: 4086926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone ingrowth into three different porous ceramics implanted into the tibia of rats and rabbits.
    Uchida A; Nade S; McCartney E; Ching W
    J Orthop Res; 1985; 3(1):65-77. PubMed ID: 2984392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanical behavior and morphological structure of callus in experimental callotasis.
    Ohyama M; Miyasaka Y; Sakurai M; Yokobori AT; Sasaki S
    Biomed Mater Eng; 1994; 4(4):273-81. PubMed ID: 7950875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osseous adaptation to continuous loading of rigid endosseous implants.
    Roberts WE; Smith RK; Zilberman Y; Mozsary PG; Smith RS
    Am J Orthod; 1984 Aug; 86(2):95-111. PubMed ID: 6589962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of porous surface configuration on the tensile strength of fixation of implants by bone ingrowth.
    Bobyn JD; Pilliar RM; Cameron HU; Weatherly GC; Kent GM
    Clin Orthop Relat Res; 1980 Jun; (149):291-8. PubMed ID: 7408314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piezoelectric ceramic implants: in vivo results.
    Park JB; Kelly BJ; Kenner GH; von Recum AF; Grether MF; Coffeen WW
    J Biomed Mater Res; 1981 Jan; 15(1):103-10. PubMed ID: 7348700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interface of calcium-phosphate and glass-ceramic in bone, a structural analysis.
    Gross UM; Müller-Mai CM; Voigt C
    Biomaterials; 1990 Jul; 11():83-5. PubMed ID: 2397266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of porous bioceramic in experimental therapy of bone injuries. III. Dynamics of the callus development at the site of porous bioceramic implantation. Morphological, histochemical and histoenzymological studies.
    Bieniek J; Kotz J; Bieniek A
    Arch Immunol Ther Exp (Warsz); 1988; 36(1):107-18. PubMed ID: 3233060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of compositional variations on bone ingrowth of implanted porous calcium aluminate ceramics.
    Graves GA; Noyes FR; Villanueva AR
    J Biomed Mater Res; 1975 Jul; 9(4):17-22. PubMed ID: 809446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic surface charge acceleration of bone ingrowth of porous hydroxyapatite/beta-tricalcium phosphate ceramics.
    Nakamura S; Kobayashi T; Nakamura M; Itoh S; Yamashita K
    J Biomed Mater Res A; 2010 Jan; 92(1):267-75. PubMed ID: 19180523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the biocompatibility of ALCAP ceramics in rat femurs.
    Mattie DR; Bajpai PK
    J Biomed Mater Res; 1988 Dec; 22(12):1101-26. PubMed ID: 3235456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of electrochemically deposited apatite coating on bonding of bone to the HA-G-Ti composite and titanium.
    Ban S; Maruno S; Arimoto N; Harada A; Hasegawa J
    J Biomed Mater Res; 1997 Jul; 36(1):9-15. PubMed ID: 9212384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.