These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 1191389)

  • 1. Sodium kinetics in aorta of spontaneously hypertensive rats.
    Llaurado JG; Madden JA
    J Appl Physiol; 1975 Nov; 39(5):868-72. PubMed ID: 1191389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of sodium in rabbit arterial wall: inability of aldosterone to alter extra to intracellular distribution.
    Llaurado JG; Smith GA
    J Endocrinol Invest; 1978 Jul; 1(3):197-201. PubMed ID: 756872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular sodium transport in arterial wall--summary of studies by digital computer simulation.
    Llaurado JG
    Int J Biomed Comput; 1986 Mar; 18(2):103-22. PubMed ID: 2422127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some effects of aldosterone on sodium kinetics and distribution in porcine arterial wall.
    Llaurado JG; Madden JA; Smith GA
    Am J Physiol; 1983 Apr; 244(4):R553-7. PubMed ID: 6837769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased monosaccharide transport in renal brush-border membrane vesicles of spontaneously hypertensive rats.
    Mate A; de la Hermosa MA; Barfull A; Sánchez-Aguayo I; Planas JM; Vázquez CM
    Cell Mol Life Sci; 2000 Jan; 57(1):165-74. PubMed ID: 10949588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term effects of captopril on cellular sodium content and mechanical properties of aortic smooth muscle from spontaneously hypertensive rats.
    Ito K; Koike H; Miyamoto M; Ozaki H; Kishimoto T; Urakawa N
    J Pharmacol Exp Ther; 1981 Nov; 219(2):520-5. PubMed ID: 7026768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+/H+ exchange activity and NHE-3 expression in renal tubules from the spontaneously hypertensive rat.
    LaPointe MS; Sodhi C; Sahai A; Batlle D
    Kidney Int; 2002 Jul; 62(1):157-65. PubMed ID: 12081574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na+-K+ regulation in cultured vascular smooth muscle cell of the spontaneously hypertensive rat.
    Tamura H; Hopp L; Kino M; Tokushige A; Searle BM; Khalil F; Aviv A
    Am J Physiol; 1986 Jun; 250(6 Pt 1):C939-47. PubMed ID: 2424316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneously hypertensive rat vascular smooth muscle cells in culture exhibit increased growth and Na+/H+ exchange.
    Berk BC; Vallega G; Muslin AJ; Gordon HM; Canessa M; Alexander RW
    J Clin Invest; 1989 Mar; 83(3):822-9. PubMed ID: 2537850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexisting independent sodium-sensitive and sodium-insensitive mechanisms of genetic hypertension in spontaneously hypertensive rats (SHR).
    Wells IC; Blotcky AJ
    Can J Physiol Pharmacol; 2001 Sep; 79(9):779-84. PubMed ID: 11599778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na(+)-K+ pump and Na(+)-K+ co-transport in cultured vascular smooth muscle cells from spontaneously hypertensive and normotensive rats: baseline activity and regulation.
    Orlov SN; Resink TJ; Bernhardt J; Bühler FR
    J Hypertens; 1992 Aug; 10(8):733-40. PubMed ID: 1325504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upregulated function of phosphatidylinositol-3-kinase in genetically hypertensive rats: a moderator of arterial hypercontractility.
    Northcott CA; Hayflick J; Watts SW
    Clin Exp Pharmacol Physiol; 2005 Oct; 32(10):851-8. PubMed ID: 16173947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+/H+ exchange in pulmonary artery smooth muscle from spontaneously hypertensive and Wistar-Kyoto rats.
    Silverman ES; Thompson BT; Quinn DA; Kinane TB; Bonventre JV; Hales CA
    Am J Physiol; 1995 Nov; 269(5 Pt 1):L673-80. PubMed ID: 7491988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin increases Na(+)-H+ exchange activity in proximal tubules from normotensive and hypertensive rats.
    Gesek FA; Schoolwerth AC
    Am J Physiol; 1991 May; 260(5 Pt 2):F695-703. PubMed ID: 1674643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion transport in erythrocytes of Prague hypertensive rat.
    Heller J; Janata J; Kamarádová S
    Physiol Bohemoslov; 1990; 39(1):45-7. PubMed ID: 2142787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Na+-Ca2+ exchange process in isolated sarcolemmal membranes of mesenteric arteries from WKY and SHR rats.
    Matlib MA; Schwartz A; Yamori Y
    Am J Physiol; 1985 Jul; 249(1 Pt 1):C166-72. PubMed ID: 2990226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The response to water-salt loading: sodium metabolism in spontaneously hypertensive rats.
    Ivanova LN; Melidi NN; Merjeyevskaya VM; Sterental LS; Zolotova VF
    Biomed Biochim Acta; 1987; 46(12):993-7. PubMed ID: 3453083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic properties of the Na+/H+ antiporter of lymphocytes from the spontaneously hypertensive rat: role of intracellular pH.
    Saleh AM; Batlle DC
    J Clin Invest; 1990 Jun; 85(6):1734-9. PubMed ID: 2161427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Na+/H+ exchange in mesenteric arteries from spontaneously hypertensive rats.
    Ellstrom DR; Foster CD; Honeyman TW; Scheid CR
    Am J Hypertens; 1993 Jan; 6(1):21-7. PubMed ID: 8381287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of sodium and protons and hypotonic haemolysis in the valinomycin-treated erythrocytes of rats with spontaneous hypertension.
    Orlov SN; Pokudin NI; Postnov YV
    J Hypertens; 1988 May; 6(5):351-9. PubMed ID: 2838546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.