BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 11914081)

  • 21. X-ray crystal structure of Desulfovibrio vulgaris rubrerythrin with zinc substituted into the [Fe(SCys)4] site and alternative diiron site structures.
    Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC
    Biochemistry; 2004 Mar; 43(11):3204-13. PubMed ID: 15023070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing the role of the active-site cysteine ligand in the superoxide reductase from Desulfoarculus baarsii.
    Mathé C; Weill CO; Mattioli TA; Berthomieu C; Houée-Levin C; Tremey E; Nivière V
    J Biol Chem; 2007 Jul; 282(30):22207-16. PubMed ID: 17545670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superoxide reductase: different interaction modes with its two redox partners.
    Almeida RM; Turano P; Moura I; Moura JJ; Pauleta SR
    Chembiochem; 2013 Sep; 14(14):1858-66. PubMed ID: 24038730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fe(3+)-eta(2)-peroxo species in superoxide reductase from Treponema pallidum. Comparison with Desulfoarculus baarsii.
    Mathé C; Nivière V; Houée-Levin C; Mattioli TA
    Biophys Chem; 2006 Jan; 119(1):38-48. PubMed ID: 16084640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pulse radiolysis studies on superoxide reductase from Treponema pallidum.
    Nivière V; Lombard M; Fontecave M; Houée-Levin C
    FEBS Lett; 2001 May; 497(2-3):171-3. PubMed ID: 11377434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of a stable cyano-bridged dinuclear iron cluster following oxidation of the superoxide reductases from Treponema pallidum and Desulfovibrio vulgaris with K(3)Fe(CN)(6).
    Auchère F; Raleiras P; Benson L; Venyaminov SY; Tavares P; Moura JJ; Moura I; Rusnak F
    Inorg Chem; 2003 Feb; 42(4):938-40. PubMed ID: 12588121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. X-ray crystal structures of reduced rubrerythrin and its azide adduct: a structure-based mechanism for a non-heme diiron peroxidase.
    Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC
    J Am Chem Soc; 2002 Aug; 124(33):9845-55. PubMed ID: 12175244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiconfigurational and DFT analyses of the electromeric formulation and UV-vis absorption spectra of the superoxide adduct of ferrous superoxide reductase.
    Attia AA; Cioloboc D; Lupan A; Silaghi-Dumitrescu R
    J Inorg Biochem; 2016 Dec; 165():49-53. PubMed ID: 27768962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on superoxide reductase: role of the axial thiolate in reactivity.
    Dey A; Jenney FE; Adams MW; Johnson MK; Hodgson KO; Hedman B; Solomon EI
    J Am Chem Soc; 2007 Oct; 129(41):12418-31. PubMed ID: 17887751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Density functional theory applied to a difference in pathways taken by the enzymes cytochrome P450 and superoxide reductase: spin States of ferric hydroperoxo intermediates and hydrogen bonds from water.
    Surawatanawong P; Tye JW; Hall MB
    Inorg Chem; 2010 Jan; 49(1):188-98. PubMed ID: 19968237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structures of the superoxide reductase from Pyrococcus furiosus in the oxidized and reduced states.
    Yeh AP; Hu Y; Jenney FE; Adams MW; Rees DC
    Biochemistry; 2000 Mar; 39(10):2499-508. PubMed ID: 10704199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.
    Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanism of superoxide scavenging by Archaeoglobus fulgidus neelaredoxin.
    Abreu IA; Saraiva LM; Soares CM; Teixeira M; Cabelli DE
    J Biol Chem; 2001 Oct; 276(42):38995-9001. PubMed ID: 11489883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin.
    Kurtz DM
    J Inorg Biochem; 2006 Apr; 100(4):679-93. PubMed ID: 16504301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Displacement of iron by zinc at the diiron site of Desulfovibrio vulgaris rubrerythrin: X-ray crystal structure and anomalous scattering analysis.
    Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC
    J Inorg Biochem; 2004 May; 98(5):786-96. PubMed ID: 15134924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of superoxide reductase bound to ferrocyanide and active site expansion upon X-ray-induced photo-reduction.
    Adam V; Royant A; Nivière V; Molina-Heredia FP; Bourgeois D
    Structure; 2004 Sep; 12(9):1729-40. PubMed ID: 15341736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of thiolate ligands on reductive N-O bond activation. Probing the O2(-) binding site of a biomimetic superoxide reductase analogue and examining the proton-dependent reduction of nitrite.
    Villar-Acevedo G; Nam E; Fitch S; Benedict J; Freudenthal J; Kaminsky W; Kovacs JA
    J Am Chem Soc; 2011 Feb; 133(5):1419-27. PubMed ID: 21207999
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superoxide reduction by Nanoarchaeum equitans neelaredoxin, an enzyme lacking the highly conserved glutamate iron ligand.
    Rodrigues JV; Victor BL; Huber H; Saraiva LM; Soares CM; Cabelli DE; Teixeira M
    J Biol Inorg Chem; 2008 Feb; 13(2):219-28. PubMed ID: 17968598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of iron(III) peroxo species in the active site of the superoxide reductase SOR from Desulfoarculus baarsii.
    Mathé C; Mattioli TA; Horner O; Lombard M; Latour JM; Fontecave M; Nivière V
    J Am Chem Soc; 2002 May; 124(18):4966-7. PubMed ID: 11982354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.