These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11914093)

  • 1. Alteration of substrate selectivity through mutation of two arginine residues in the binding site of amadoriase II from Aspergillus sp.
    Wu X; Chen SG; Petrash JM; Monnier VM
    Biochemistry; 2002 Apr; 41(13):4453-8. PubMed ID: 11914093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning of amadoriase I isoenzyme from Aspergillus sp.: evidence of FAD covalently linked to Cys342.
    Wu X; Takahashi M; Chen SG; Monnier VM
    Biochemistry; 2000 Feb; 39(6):1515-21. PubMed ID: 10684633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic studies, mechanism, and substrate specificity of amadoriase I from Aspergillus sp.
    Wu X; Palfey BA; Mossine VV; Monnier VM
    Biochemistry; 2001 Oct; 40(43):12886-95. PubMed ID: 11669625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the deglycating enzyme fructosamine oxidase (amadoriase II).
    Collard F; Zhang J; Nemet I; Qanungo KR; Monnier VM; Yee VC
    J Biol Chem; 2008 Oct; 283(40):27007-16. PubMed ID: 18667417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation, purification, and characterization of amadoriase isoenzymes (fructosyl amine-oxygen oxidoreductase EC 1.5.3) from Aspergillus sp.
    Takahashi M; Pischetsrieder M; Monnier VM
    J Biol Chem; 1997 Feb; 272(6):3437-43. PubMed ID: 9013588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning and expression of amadoriase isoenzyme (fructosyl amine:oxygen oxidoreductase, EC 1.5.3) from Aspergillus fumigatus.
    Takahashi M; Pischetsrieder M; Monnier VM
    J Biol Chem; 1997 May; 272(19):12505-7. PubMed ID: 9139700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A continuous enzyme assay and characterisation of fructosyl amine oxidase enzymes (EC 1.5.3).
    Miller AG; Hegge S; Uhlmann A; Gerrard JA
    Arch Biochem Biophys; 2005 Feb; 434(1):60-6. PubMed ID: 15629109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical modification of L-phenylalanine oxidase from Pseudomonas sp. P-501 by phenylglyoxal. Identification of one essential arginyl residue.
    Mukouyama EB; Hirose T; Suzuki H
    J Biochem; 1998 Jun; 123(6):1097-103. PubMed ID: 9603998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate specificity of amadoriase I from Aspergillus fumigatus.
    Mennella C; Borrelli RC; Vinale F; Ruocco M; Fogliano V
    Ann N Y Acad Sci; 2005 Jun; 1043():837-44. PubMed ID: 16037311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of arginine 331 as an important active site residue in the class II fructose-1,6-bisphosphate aldolase of Escherichia coli.
    Qamar S; Marsh K; Berry A
    Protein Sci; 1996 Jan; 5(1):154-61. PubMed ID: 8771208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of dye-mediated dehydrogenase property of fructosyl amino acid oxidases by site-directed mutagenesis studies of its putative proton relay system.
    Kim S; Nibe E; Ferri S; Tsugawa W; Sode K
    Biotechnol Lett; 2010 Aug; 32(8):1123-9. PubMed ID: 20383736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic deglycation with amadoriase enzymes from Aspergillus sp. as a potential strategy against the complications of diabetes and aging.
    Monnier VM; Wu X
    Biochem Soc Trans; 2003 Dec; 31(Pt 6):1349-53. PubMed ID: 14641061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for an arginine residue at the substrate binding site of Escherichia coli adenylosuccinate synthetase as studied by chemical modification and site-directed mutagenesis.
    Dong Q; Liu F; Myers AM; Fromm HJ
    J Biol Chem; 1991 Jul; 266(19):12228-33. PubMed ID: 2061308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of the deglycating enzyme Amadoriase I in its free form and substrate-bound complex.
    Rigoldi F; Gautieri A; Dalle Vedove A; Lucarelli AP; Vesentini S; Parisini E
    Proteins; 2016 Jun; 84(6):744-58. PubMed ID: 26873906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B.
    Fukasawa KM; Hirose J; Hata T; Ono Y
    Biochemistry; 2006 Sep; 45(38):11425-31. PubMed ID: 16981702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.
    Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS
    Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclohexanedione modification of arginine at the active site of Aspergillus ficuum phytase.
    Ullah AH; Cummins BJ; Dischinger HC
    Biochem Biophys Res Commun; 1991 Jul; 178(1):45-53. PubMed ID: 1648914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic deglycation of proteins.
    Wu X; Monnier VM
    Arch Biochem Biophys; 2003 Nov; 419(1):16-24. PubMed ID: 14568004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Squash glycerol-3-phosphate (1)-acyltransferase. Alteration of substrate selectivity and identification of arginine and lysine residues important in catalytic activity.
    Slabas AR; Kroon JT; Scheirer TP; Gilroy JS; Hayman M; Rice DW; Turnbull AP; Rafferty JB; Fawcett T; Simon WJ
    J Biol Chem; 2002 Nov; 277(46):43918-23. PubMed ID: 12205087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loop engineering of amadoriase II and mutational cooperativity.
    Qian Y; Zheng J; Lin Z
    Appl Microbiol Biotechnol; 2013 Oct; 97(19):8599-607. PubMed ID: 23354448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.