BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 11914157)

  • 1. Salmon-derived nitrogen in terrestrial invertebrates from coniferous forests of the Pacific Northwest.
    Hocking MD; Reimchen TE
    BMC Ecol; 2002 Mar; 2():4. PubMed ID: 11914157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen uptake in riparian plant communities across a sharp ecological boundary of salmon density.
    Mathewson DD; Hocking MD; Reimchen TE
    BMC Ecol; 2003 May; 3():4. PubMed ID: 12729462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between Pacific salmon and aquatic and terrestrial ecosystems: implications for ecosystem-based management.
    Walsh JC; Pendray JE; Godwin SC; Artelle KA; Kindsvater HK; Field RD; Harding JN; Swain NR; Reynolds JD
    Ecology; 2020 Sep; 101(9):e03060. PubMed ID: 32266971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Location is everything: evaluating the effects of terrestrial and marine resource subsidies on an estuarine bivalve.
    Harding JM; Segal MR; Reynolds JD
    PLoS One; 2015; 10(5):e0125167. PubMed ID: 25993002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Riparian forest composition affects stream litter decomposition despite similar microbial and invertebrate communities.
    Kominoski JS; Marczak LB; Richardson JS
    Ecology; 2011 Jan; 92(1):151-9. PubMed ID: 21560685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marine-derived nitrogen and carbon in freshwater-riparian food webs of the Copper River Delta, southcentral Alaska.
    Hicks BJ; Wipfli MS; Lang DW; Lang ME
    Oecologia; 2005 Aug; 144(4):558-69. PubMed ID: 15891853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of spawning Pacific salmon on terrestrial invertebrates: Insects near spawning habitat are isotopically enriched with nitrogen-15 but display no differences in body size.
    Rammell NF; Dennert AM; Ernst CM; Reynolds JD
    Ecol Evol; 2021 Sep; 11(18):12728-12738. PubMed ID: 34594534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of salmon on riparian plant diversity.
    Hocking MD; Reynolds JD
    Science; 2011 Mar; 331(6024):1609-12. PubMed ID: 21442794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aquatic food-web dynamics following incorporation of nutrients derived from Atlantic anadromous fishes.
    Samways KM; Soto DX; Cunjak RA
    J Fish Biol; 2018 Feb; 92(2):399-419. PubMed ID: 29235101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salmon increase forest bird abundance and diversity.
    Wagner MA; Reynolds JD
    PLoS One; 2019; 14(2):e0210031. PubMed ID: 30726212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salmon subsidies predict territory size and habitat selection of an avian insectivore.
    Wilcox KA; Wagner MA; Reynolds JD
    PLoS One; 2021; 16(7):e0254314. PubMed ID: 34237085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracing anthropogenic inputs in stream foods webs with stable carbon and nitrogen isotope systematics along an agricultural gradient.
    Lee KY; Graham L; Spooner DE; Xenopoulos MA
    PLoS One; 2018; 13(7):e0200312. PubMed ID: 29979760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The energetic consequences of habitat structure for forest stream salmonids.
    Naman SM; Rosenfeld JS; Kiffney PM; Richardson JS
    J Anim Ecol; 2018 Sep; 87(5):1383-1394. PubMed ID: 29737519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reciprocal subsidies and food web pathways leading to chum salmon fry in a temperate marine-terrestrial ecotone.
    Romanuk TN; Levings CD
    PLoS One; 2010 Apr; 5(4):e10073. PubMed ID: 20386705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracing biogeochemical subsidies from glacier runoff into Alaska's coastal marine food webs.
    Arimitsu ML; Hobson KA; Webber DN; Piatt JF; Hood EW; Fellman JB
    Glob Chang Biol; 2018 Jan; 24(1):387-398. PubMed ID: 28833910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Burrowing seabird effects on invertebrate communities in soil and litter are dominated by ecosystem engineering rather than nutrient addition.
    Orwin KH; Wardle DA; Towns DR; St John MG; Bellingham PJ; Jones C; Fitzgerald BM; Parrish RG; Lyver PO
    Oecologia; 2016 Jan; 180(1):217-30. PubMed ID: 26410032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salmon subsidize an escape from a size spectrum.
    Hocking MD; Dulvy NK; Reynolds JD; Ring RA; Reimchen TE
    Proc Biol Sci; 2013 Feb; 280(1753):20122433. PubMed ID: 23282994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Critical Assessment of the Ecological Assumptions Underpinning Compensatory Mitigation of Salmon-Derived Nutrients.
    Collins SF; Marcarelli AM; Baxter CV; Wipfli MS
    Environ Manage; 2015 Sep; 56(3):571-86. PubMed ID: 25968140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of fungal and invertebrate communities to wood decay in tropical terrestrial and aquatic habitats.
    Ferrer A; Heath KD; Canam T; Flores HD; Dalling JW
    Ecology; 2020 Sep; 101(9):e03097. PubMed ID: 32415862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salmon and alder as nitrogen sources to riparian forests in a boreal Alaskan watershed.
    Helfield JM; Naiman RJ
    Oecologia; 2002 Dec; 133(4):573-582. PubMed ID: 28466167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.