These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 11914519)

  • 1. Mechanical transduction in outer hair cells.
    Gummer AW; Meyer J; Frank G; Scherer MP; Preyer S
    Audiol Neurootol; 2002; 7(1):13-6. PubMed ID: 11914519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonant tectorial membrane motion in the inner ear: its crucial role in frequency tuning.
    Gummer AW; Hemmert W; Zenner HP
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8727-32. PubMed ID: 8710939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the active process of the cochlea: phase relations, amplification, and spontaneous oscillation.
    Markin VS; Hudspeth AJ
    Biophys J; 1995 Jul; 69(1):138-47. PubMed ID: 7669891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti.
    Lee HY; Raphael PD; Xia A; Kim J; Grillet N; Applegate BE; Ellerbee Bowden AK; Oghalai JS
    J Neurosci; 2016 Aug; 36(31):8160-73. PubMed ID: 27488636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tectorial membrane: a possible sharpening effect on the frequency analysis in the cochlea.
    Zwislocki JJ
    Acta Otolaryngol; 1979; 87(3-4):267-9. PubMed ID: 443008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tectorial membrane: a possible effect on frequency analysis in the cochlea.
    Zwislocki JJ; Kletsky EJ
    Science; 1979 May; 204(4393):639-41. PubMed ID: 432671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of cochlear micromechanics.
    Fukazawa T
    Hear Res; 1997 Nov; 113(1-2):182-90. PubMed ID: 9387997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A micromechanical model of the cochlea with radial movement of the tectorial membrane.
    Fukazawa T; Ishida K; Murai Y
    Hear Res; 1999 Nov; 137(1-2):59-67. PubMed ID: 10545634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interplay of organ-of-Corti vibrational modes, not tectorial- membrane resonance, sets outer-hair-cell stereocilia phase to produce cochlear amplification.
    Guinan JJ
    Hear Res; 2020 Sep; 395():108040. PubMed ID: 32784038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How can the cochlear amplifier be realized by the outer hair cells which have nothing to push against?
    Fukazawa T
    Hear Res; 2002 Oct; 172(1-2):53-61. PubMed ID: 12361866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of outer hair cell bending to stereocilium deflection in the cochlea.
    Li H; Lim KM
    Hear Res; 2007 Oct; 232(1-2):20-8. PubMed ID: 17629426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A piezoelectric model of outer hair cell function.
    Mountain DC; Hubbard AE
    J Acoust Soc Am; 1994 Jan; 95(1):350-4. PubMed ID: 8120246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of inner and outer hair cells in mechanical frequency selectivity of the cochlea.
    Strelioff D; Flock A; Minser KE
    Hear Res; 1985 May; 18(2):169-75. PubMed ID: 4044418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reticular lamina and basilar membrane vibrations in living mouse cochleae.
    Ren T; He W; Kemp D
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9910-5. PubMed ID: 27516544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics.
    Meaud J; Grosh K
    J Acoust Soc Am; 2010 Mar; 127(3):1411-21. PubMed ID: 20329841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimal basilar membrane motion in low-frequency hearing.
    Warren RL; Ramamoorthy S; Ciganović N; Zhang Y; Wilson TM; Petrie T; Wang RK; Jacques SL; Reichenbach T; Nuttall AL; Fridberger A
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):E4304-10. PubMed ID: 27407145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Outer hair cell active force generation in the cochlear environment.
    Liao Z; Feng S; Popel AS; Brownell WE; Spector AA
    J Acoust Soc Am; 2007 Oct; 122(4):2215-25. PubMed ID: 17902857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local cochlear mechanical responses revealed through outer hair cell receptor potential measurements.
    Lukashkin AN; Russell IJ; Rybdylova O
    Biophys J; 2024 Sep; 123(18):3163-3175. PubMed ID: 39014895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo micromechanical measurements of the organ of Corti in the basal cochlear turn.
    Nuttall AL; Ren T; de Boer E; Zheng J; Parthasarathi A; Grosh K; Guo M; Dolan D
    Audiol Neurootol; 2002; 7(1):21-6. PubMed ID: 11914521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active nonlinear mechanics of the organ of Corti including the stereocilia-tectorial membrane complex.
    Böhnke F; von Mikusch-Buchberg J; Arnold W
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(5):311-7. PubMed ID: 10529653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.