These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 1191637)
1. Gas chromatography-mass spectrometry for probing the structure and mechanism of action of enzyme active sites. The role of Glu-270 in carboxypeptidase A. Nau H; Riordan JF Biochemistry; 1975 Dec; 14(24):5285-94. PubMed ID: 1191637 [TBL] [Abstract][Full Text] [Related]
2. Protease-catalyzed incorporation of 18O into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Schnölzer M; Jedrzejewski P; Lehmann WD Electrophoresis; 1996 May; 17(5):945-53. PubMed ID: 8783021 [TBL] [Abstract][Full Text] [Related]
3. Modification of the carboxypeptidase A active site residue Glu-270 prevents interaction with a protein protease inhibitor from Ascaris. Homandberg GA; Minor ST; Peanasky RJ Biochim Biophys Acta; 1980 Apr; 612(2):384-94. PubMed ID: 7370277 [TBL] [Abstract][Full Text] [Related]
4. Structural studies on yeast 3-phosphoglycerate kinase. Identification by immuno-affinity chromatography of one glutamyl residue essential for yeast 3-phosphoglycerate kinase activity. Its location in the primary structure. Desvages G; Roustan C; Fattoum A; Pradel LA Eur J Biochem; 1980 Apr; 105(2):259-66. PubMed ID: 6991252 [TBL] [Abstract][Full Text] [Related]
5. Differential labeling of the catalytic subunit of cAMP-dependent protein kinase with a water-soluble carbodiimide: identification of carboxyl groups protected by MgATP and inhibitor peptides. Buechler JA; Taylor SS Biochemistry; 1990 Feb; 29(7):1937-43. PubMed ID: 2331473 [TBL] [Abstract][Full Text] [Related]
6. Chemical modification of carboxypeptidase A crystals. Nitration of tyrosine-248. Muszynska G; Riordan JF Biochemistry; 1976 Jan; 15(1):46-51. PubMed ID: 942853 [TBL] [Abstract][Full Text] [Related]
7. Amino acid sequencing by gas chromatography--mass spectrometry using trifluoro-dideuteroalkylated peptide derivatives. C. The primary structure of the carboxypeptidase inhibitor from potatoes. Nau H; Biemann K Anal Biochem; 1976 May; 73(1):175-86. PubMed ID: 942094 [No Abstract] [Full Text] [Related]
8. alpha-Carboxyl-linked glutamates in the folylpolyglutamates of Escherichia coli. Ferone R; Hanlon MH; Singer SC; Hunt DF J Biol Chem; 1986 Dec; 261(35):16356-62. PubMed ID: 3536925 [TBL] [Abstract][Full Text] [Related]
9. Reaction of yeast carboxypeptidase C1 with group-specific reagents. Kuhn RW; Walsh KA; Neurath H Biochemistry; 1976 Nov; 15(22):4881-5. PubMed ID: 10962 [TBL] [Abstract][Full Text] [Related]
10. 3D structure of Sulfolobus solfataricus carboxypeptidase developed by molecular modeling is confirmed by site-directed mutagenesis and small angle X-ray scattering. Occhipinti E; Martelli PL; Spinozzi F; Corsi F; Formantici C; Molteni L; Amenitsch H; Mariani P; Tortora P; Casadio R Biophys J; 2003 Aug; 85(2):1165-75. PubMed ID: 12885660 [TBL] [Abstract][Full Text] [Related]
11. The amino acid sequence of bovine carboxypeptidase A. Bradshaw RA; Ericsson LH; Walsh KA; Neurath H Proc Natl Acad Sci U S A; 1969 Aug; 63(4):1389-94. PubMed ID: 5260942 [TBL] [Abstract][Full Text] [Related]
12. Metal ion effects on target sites of modification in metallocarboxypeptidase B. Zisapel N; Blank T; Sokolovsky M J Inorg Biochem; 1983 Jun; 18(3):253-62. PubMed ID: 6875538 [TBL] [Abstract][Full Text] [Related]
13. Spectral properties of cobalt carboxypeptidase A. Interaction of the metal atom with anions. Geoghegan KF; Holmquist B; Spilburg CA; Vallee BL Biochemistry; 1983 Apr; 22(8):1847-52. PubMed ID: 6849891 [TBL] [Abstract][Full Text] [Related]
14. Light activates the reaction of bacteriorhodopsin aspartic acid-115 with dicyclohexylcarbodiimide. Renthal R; Cothran M; Espinoza B; Wall KA; Bernard M Biochemistry; 1985 Jul; 24(16):4275-9. PubMed ID: 3931674 [TBL] [Abstract][Full Text] [Related]
15. The amino acid sequence of a carboxypeptidase inhibitor from potatoes. Hass GM; Nau H; Biemann K; Grahn DT; Ericsson LH; Neurath H Biochemistry; 1975 Mar; 14(6):1334-42. PubMed ID: 1122280 [TBL] [Abstract][Full Text] [Related]
16. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis. Cha J; Auld DS Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337 [TBL] [Abstract][Full Text] [Related]
17. Glutamic acid-149 is important for enzymatic activity of yeast inorganic pyrophosphatase. Gonzalez MA; Cooperman BS Biochemistry; 1986 Nov; 25(22):7179-85. PubMed ID: 2879557 [TBL] [Abstract][Full Text] [Related]
18. Specific carbodiimide-binding mechanism for the selective modification of the aspartic acid-101 residue of lysozyme in the carbodiimide-amine reaction. Kuroki R; Yamada H; Imoto T J Biochem; 1986 May; 99(5):1493-9. PubMed ID: 3711072 [TBL] [Abstract][Full Text] [Related]
19. Structure of 2-hydroxy-5-nitrobenzylated carboxypeptidase A. Liu Wu LN; Horton R Biochim Biophys Acta; 1979 Mar; 577(1):22-33. PubMed ID: 427213 [TBL] [Abstract][Full Text] [Related]
20. Modification of carboxyl groups in bovine carboxypeptidase A. II. Chemical identification of a functional glutamic acid residue and other reactive groups. Pétra PH; Neurath H Biochemistry; 1971 Aug; 10(17):3171-7. PubMed ID: 5165842 [No Abstract] [Full Text] [Related] [Next] [New Search]