BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 11916410)

  • 1. Identification of a protein-promoting vibration in the reaction catalyzed by horse liver alcohol dehydrogenase.
    Caratzoulas S; Mincer JS; Schwartz SD
    J Am Chem Soc; 2002 Apr; 124(13):3270-6. PubMed ID: 11916410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic structures of horse liver alcohol dehydrogenase (HLADH): results of molecular dynamics simulations of HLADH-NAD(+)-PhCH(2)OH, HLADH-NAD(+)-PhCH(2)O(-), and HLADH-NADH-PhCHO.
    Luo J; Bruice TC
    J Am Chem Soc; 2001 Dec; 123(48):11952-9. PubMed ID: 11724603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ten-nanosecond molecular dynamics simulation of the motions of the horse liver alcohol dehydrogenase.PhCH2O- complex.
    Luo J; Bruice TC
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16597-600. PubMed ID: 12481026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of aldehyde oxidation catalyzed by horse liver alcohol dehydrogenase.
    Olson LP; Luo J; Almarsson O; Bruice TC
    Biochemistry; 1996 Jul; 35(30):9782-91. PubMed ID: 8703951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alteration in substrate specificity of horse liver alcohol dehydrogenase by an acyclic nicotinamide analog of NAD(+).
    Malver O; Sebastian MJ; Oppenheimer NJ
    DNA Repair (Amst); 2014 Nov; 23():95-100. PubMed ID: 25280628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ternary complexes of liver alcohol dehydrogenase.
    Pocker Y; Page JD; Li H; Bhat CC
    Chem Biol Interact; 2001 Jan; 130-132(1-3):371-81. PubMed ID: 11306059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site modifications in a double mutant of liver alcohol dehydrogenase: structural studies of two enzyme-ligand complexes.
    Colby TD; Bahnson BJ; Chin JK; Klinman JP; Goldstein BM
    Biochemistry; 1998 Jun; 37(26):9295-304. PubMed ID: 9649310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and modelling studies of NAD+ and poly(ethylene glycol)-bound NAD+ in horse liver alcohol dehydrogenase.
    Vanhommerig SA; Sluyterman LA; Meijer EM
    Biochim Biophys Acta; 1996 Jul; 1295(2):125-38. PubMed ID: 8695638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic NAD(+) models for tandem cofactor regeneration, horse liver alcohol dehydrogenase recognition of 1,4-NADH derivatives, and chiral synthesis.
    Lo HC; Fish RH
    Angew Chem Int Ed Engl; 2002 Feb; 41(3):478-81. PubMed ID: 12491384
    [No Abstract]   [Full Text] [Related]  

  • 10. Contributions of valine-292 in the nicotinamide binding site of liver alcohol dehydrogenase and dynamics to catalysis.
    Rubach JK; Ramaswamy S; Plapp BV
    Biochemistry; 2001 Oct; 40(42):12686-94. PubMed ID: 11601993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative pathways and reactions of benzyl alcohol and benzaldehyde with horse liver alcohol dehydrogenase.
    Shearer GL; Kim K; Lee KM; Wang CK; Plapp BV
    Biochemistry; 1993 Oct; 32(41):11186-94. PubMed ID: 8218182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probes of a role for remote binding interactions on hydrogen tunneling in the horse liver alcohol dehydrogenase reaction.
    Chin JK; Klinman JP
    Biochemistry; 2000 Feb; 39(6):1278-84. PubMed ID: 10684607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-dependent structure of the E x S complex of Bacillus stearothermophilus alcohol dehydrogenase.
    Zhang X; Bruice TC
    Biochemistry; 2007 Jan; 46(3):837-43. PubMed ID: 17223705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallographic investigations of alcohol dehydrogenases.
    Eklund H; Ramaswamy S; Plapp BV; el-Ahmad M; Danielsson O; Höög JO; Jörnvall H
    EXS; 1994; 71():269-77. PubMed ID: 8032158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cavities at the nicotinamide binding site of liver alcohol dehydrogenase on structure, dynamics and catalysis.
    Yahashiri A; Rubach JK; Plapp BV
    Biochemistry; 2014 Feb; 53(5):881-94. PubMed ID: 24437493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticorrelated motions as a driving force in enzyme catalysis: the dehydrogenase reaction.
    Luo J; Bruice TC
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13152-6. PubMed ID: 15331786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydride transfer in liver alcohol dehydrogenase: quantum dynamics, kinetic isotope effects, and role of enzyme motion.
    Billeter SR; Webb SP; Agarwal PK; Iordanov T; Hammes-Schiffer S
    J Am Chem Soc; 2001 Nov; 123(45):11262-72. PubMed ID: 11697969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic studies of isosteric NAD analogues bound to alcohol dehydrogenase: specificity and substrate binding in two ternary complexes.
    Li H; Hallows WH; Punzi JS; Pankiewicz KW; Watanabe KA; Goldstein BM
    Biochemistry; 1994 Oct; 33(39):11734-44. PubMed ID: 7918390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical spectroscopy of nicotinoprotein alcohol dehydrogenase from Amycolatopsis methanolica: a comparison with horse liver alcohol dehydrogenase and UDP-galactose epimerase.
    Piersma SR; Visser AJ; de Vries S; Duine JA
    Biochemistry; 1998 Mar; 37(9):3068-77. PubMed ID: 9485460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of protein flexibility on hydride-transfer parameters in thermophilic and psychrophilic alcohol dehydrogenases.
    Liang ZX; Tsigos I; Bouriotis V; Klinman JP
    J Am Chem Soc; 2004 Aug; 126(31):9500-1. PubMed ID: 15291528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.