BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 11916696)

  • 1. Contribution of Lactococcus lactis cell envelope proteinase specificity to peptide accumulation and bitterness in reduced-fat Cheddar cheese.
    Broadbent JR; Barnes M; Brennand C; Strickland M; Houck K; Johnson ME; Steele JL
    Appl Environ Microbiol; 2002 Apr; 68(4):1778-85. PubMed ID: 11916696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of Lactococcus lactis cell envelope proteinase specificity by partial allele exchange.
    Broadbent JR; Rodríguez BT; Joseph P; Smith EA; Steele JL
    J Appl Microbiol; 2006 Jun; 100(6):1307-17. PubMed ID: 16696678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide sequence and characterization of the cell envelope proteinase plasmid in Lactococcus lactis subsp. cremoris HP.
    Christensson C; Pillidge CJ; Ward LJ; O'Toole PW
    J Appl Microbiol; 2001 Aug; 91(2):334-43. PubMed ID: 11473599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The contribution of lactococcal starter proteinases to proteolysis in cheddar cheese.
    Law J; Fitzgerald GF; Uniacke-Lowe T; Daly C; Fox PF
    J Dairy Sci; 1993 Sep; 76(9):2455-67. PubMed ID: 8227650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Varying influence of the autolysin, N-acetyl muramidase, and the cell envelope proteinase on the rate of autolysis of six commercial Lactococcus lactis cheese starter bacteria grown in milk.
    Govindasamy-Lucey S; Gopal PK; Sullivan PA; Pillidge CJ
    J Dairy Res; 2000 Nov; 67(4):585-96. PubMed ID: 11131071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered specificity of lactococcal proteinase p(i) (lactocepin I) in humectant systems reflecting the water activity and salt content of cheddar cheese.
    Reid JR; Coolbear T
    Appl Environ Microbiol; 1998 Feb; 64(2):588-93. PubMed ID: 16349501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of endopeptidase genes from the genomic sequence of Lactobacillus helveticus CNRZ32 and the role of these genes in hydrolysis of model bitter peptides.
    Sridhar VR; Hughes JE; Welker DL; Broadbent JR; Steele JL
    Appl Environ Microbiol; 2005 Jun; 71(6):3025-32. PubMed ID: 15932998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity of lactococcus lactis subsp. cremoris SK11 proteinase, lactocepin III, in low-water-activity, high-salt-concentration humectant systems and its stability compared with that of lactocepin I.
    Reid JR; Coolbear T
    Appl Environ Microbiol; 1999 Jul; 65(7):2947-53. PubMed ID: 10388688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The autoproteolysis of Lactococcus lactis lactocepin III affects its specificity towards beta-casein.
    Flambard B; Juillard V
    Appl Environ Microbiol; 2000 Dec; 66(12):5134-40. PubMed ID: 11097880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafiltered milk reduces bitterness in reduced-fat Cheddar cheese made with an exopolysaccharide-producing culture.
    Agrawal P; Hassan AN
    J Dairy Sci; 2007 Jul; 90(7):3110-7. PubMed ID: 17582092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of exopolysaccharide-producing cultures in reduced-fat Cheddar cheese: composition and proteolysis.
    Awad S; Hassan AN; Halaweish F
    J Dairy Sci; 2005 Dec; 88(12):4195-203. PubMed ID: 16291610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The occurrence of two intracellular oligoendopeptidases in Lactococcus lactis and their significance for peptide conversion in cheese.
    Baankreis R; van Schalkwijk S; Alting AC; Exterkate FA
    Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):386-92. PubMed ID: 8597539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Starter strain related effects on the biochemical and sensory properties of Cheddar cheese.
    Hickey DK; Kilcawley KN; Beresford TP; Sheehan EM; Wilkinson MG
    J Dairy Res; 2007 Feb; 74(1):9-17. PubMed ID: 16987432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of exopolysaccharide produced by isogenic strains of Lactococcus lactis on half-fat Cheddar cheese.
    Costa NE; Hannon JA; Guinee TP; Auty MA; McSweeney PL; Beresford TP
    J Dairy Sci; 2010 Aug; 93(8):3469-86. PubMed ID: 20655415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbiology of Cheddar cheese made with different fat contents using a Lactococcus lactis single-strain starter.
    Broadbent JR; Brighton C; McMahon DJ; Farkye NY; Johnson ME; Steele JL
    J Dairy Sci; 2013 Jul; 96(7):4212-22. PubMed ID: 23684037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Starter bacteria are the prime agents of lipolysis in cheddar cheese.
    Hickey DK; Kilcawley KN; Beresford TP; Wilkinson MG
    J Agric Food Chem; 2006 Oct; 54(21):8229-35. PubMed ID: 17032033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophilic and hydrophobic peptides produced in cheese by wild Lactococcus lactis strains.
    Morales P; Gaya P; Medina M; Nuñez M
    Lett Appl Microbiol; 2002; 35(6):518-22. PubMed ID: 12460436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteolytic enzyme activities in Cheddar cheese juice made using lactococcal starters of differing autolytic properties.
    Sheehan A; Cuinn GO; Fitzgerald RJ; Wilkinson MG
    J Appl Microbiol; 2006 Apr; 100(4):893-901. PubMed ID: 16553747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flavor enhancement of reduced fat cheddar cheese using an integrated culturing system.
    Midje DL; Bastian ED; Morris HA; Martin FB; Bridgeman T; Vickers ZM
    J Agric Food Chem; 2000 May; 48(5):1630-6. PubMed ID: 10820070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of bitter peptides in aged cheddar cheese.
    Karametsi K; Kokkinidou S; Ronningen I; Peterson DG
    J Agric Food Chem; 2014 Aug; 62(32):8034-41. PubMed ID: 25075877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.