BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11916880)

  • 1. Cellular organization and substructure measured using angle-resolved low-coherence interferometry.
    Wax A; Yang C; Backman V; Badizadegan K; Boone CW; Dasari RR; Feld MS
    Biophys J; 2002 Apr; 82(4):2256-64. PubMed ID: 11916880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear morphology measurements with angle-resolved low coherence interferometry for application to cell biology and early cancer detection.
    Wax A; Chalut KJ
    Stud Health Technol Inform; 2013; 185():129-51. PubMed ID: 23542934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of long range correlations due to coherent light scattering from in-vitro cell arrays using angle-resolved low coherence interferometry.
    Pyhtila JW; Ma H; Simnick AJ; Chilkoti A; Wax A
    J Biomed Opt; 2006; 11(3):34022. PubMed ID: 16822071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light scattering measurements of subcellular structure provide noninvasive early detection of chemotherapy-induced apoptosis.
    Chalut KJ; Ostrander JH; Giacomelli MG; Wax A
    Cancer Res; 2009 Feb; 69(3):1199-204. PubMed ID: 19141640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear morphology measurements with angle-resolved low coherence interferometry for application to cell biology and early cancer detection.
    Wax A; Chalut KJ
    Anal Cell Pathol (Amst); 2011; 34(5):207-22. PubMed ID: 21988885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unified Mie and fractal scattering by biological cells and subcellular structures.
    Wu TT; Qu JY; Xu M
    Opt Lett; 2007 Aug; 32(16):2324-6. PubMed ID: 17700773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei.
    Amoozegar C; Giacomelli MG; Keener JD; Chalut KJ; Wax A
    Appl Opt; 2009 Apr; 48(10):D20-5. PubMed ID: 19340110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry.
    Wax A; Yang C; Müller MG; Nines R; Boone CW; Steele VE; Stoner GD; Dasari RR; Feld MS
    Cancer Res; 2003 Jul; 63(13):3556-9. PubMed ID: 12839941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry.
    Wax A; Yang C; Backman V; Kalashnikov M; Dasari RR; Feld MS
    J Opt Soc Am A Opt Image Sci Vis; 2002 Apr; 19(4):737-44. PubMed ID: 11934166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of intestinal dysplasia using angle-resolved low coherence interferometry.
    Terry N; Zhu Y; Thacker JK; Migaly J; Guy C; Mantyh CR; Wax A
    J Biomed Opt; 2011 Oct; 16(10):106002. PubMed ID: 22029349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angular range, sampling and noise considerations for inverse light scattering analysis of nuclear morphology.
    Zhang H; Steelman ZA; Ho DS; Chu KK; Wax A
    J Biophotonics; 2019 Feb; 12(2):e201800258. PubMed ID: 30239148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures.
    Mourant JR; Johnson TM; Carpenter S; Guerra A; Aida T; Freyer JP
    J Biomed Opt; 2002 Jul; 7(3):378-87. PubMed ID: 12175287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ detection of nuclear atypia in Barrett's esophagus by using angle-resolved low-coherence interferometry.
    Pyhtila JW; Chalut KJ; Boyer JD; Keener J; D'Amico T; Gottfried M; Gress F; Wax A
    Gastrointest Endosc; 2007 Mar; 65(3):487-91. PubMed ID: 17321252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the T-matrix method to determine the structure of spheroidal cell nuclei with angle-resolved light scattering.
    Giacomelli MG; Chalut KJ; Ostrander JH; Wax A
    Opt Lett; 2008 Nov; 33(21):2452-4. PubMed ID: 18978884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures.
    Xu M; Wu TT; Qu JY
    J Biomed Opt; 2008; 13(2):024015. PubMed ID: 18465978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid, depth-resolved light scattering measurements using Fourier domain, angle-resolved low coherence interferometry.
    Pyhtila JW; Wax A
    Opt Express; 2004 Dec; 12(25):6178-83. PubMed ID: 17195864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry.
    Chalut KJ; Chen S; Finan JD; Giacomelli MG; Guilak F; Leong KW; Wax A
    Biophys J; 2008 Jun; 94(12):4948-56. PubMed ID: 18326642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of optical parameters of polystyrene spheres in dense aqueous suspensions.
    Xia H; Miao C; Cheng J; Tao S; Pang R; Wu X
    Appl Opt; 2012 Jun; 51(16):3263-8. PubMed ID: 22695559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier-domain low-coherence interferometry for light-scattering spectroscopy.
    Wax A; Yang C; Izatt JA
    Opt Lett; 2003 Jul; 28(14):1230-2. PubMed ID: 12885030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mie-type scattering and non-Beer-Lambert absorption behavior of human cells in infrared microspectroscopy.
    Mohlenhoff B; Romeo M; Diem M; Wood BR
    Biophys J; 2005 May; 88(5):3635-40. PubMed ID: 15749767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.