These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1191689)

  • 41. Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure.
    Sokolov Y; Kozak JA; Kayed R; Chanturiya A; Glabe C; Hall JE
    J Gen Physiol; 2006 Dec; 128(6):637-47. PubMed ID: 17101816
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermodynamics of sodium dodecyl sulfate partitioning into lipid membranes.
    Tan A; Ziegler A; Steinbauer B; Seelig J
    Biophys J; 2002 Sep; 83(3):1547-56. PubMed ID: 12202379
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ion transport through excitability-inducing material (EIM) channels in lipid bilayer membranes.
    Latorre R; Ehrenstein G; Lecar H
    J Gen Physiol; 1972 Jul; 60(1):72-85. PubMed ID: 5042024
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lipid-dependent and phloretin-induced modifications of dipicrylamine adsorption by bilayer membranes.
    Wang CC; Bruner LJ
    Nature; 1978 Mar; 272(5650):268-70. PubMed ID: 628453
    [No Abstract]   [Full Text] [Related]  

  • 45. Adsorption to dipalmitoylphosphatidylcholine membranes in gel and fluid state: pentachlorophenolate, dipicrylamine, and tetraphenylborate.
    Smejtek P; Wang SR
    Biophys J; 1990 Nov; 58(5):1285-94. PubMed ID: 2291945
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Voltage-dependent lipid flip-flop induced by alamethicin.
    Hall JE
    Biophys J; 1981 Mar; 33(3):373-81. PubMed ID: 7225511
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of double-layer polarization on ion transport.
    Hainsworth AH; Hladky SB
    Biophys J; 1987 Jan; 51(1):27-36. PubMed ID: 2432953
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Dissociation of thyroglobulin by tetraphenylborate ion].
    Mauchamp J
    Biochim Biophys Acta; 1971 Nov; 251(2):281-4. PubMed ID: 11452394
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tetraphenylborate conductance through lipid bilayer membranes.
    Le Blanc OH
    Biochim Biophys Acta; 1969; 193(2):350-60. PubMed ID: 5351950
    [No Abstract]   [Full Text] [Related]  

  • 50. [Preparation of a tetraphenyl borate-based membrane electrode and its use in chemical analysis of drug compounds].
    Pethõné NE; Szász G
    Acta Pharm Hung; 1987 Nov; 57(6):243-54. PubMed ID: 3445765
    [No Abstract]   [Full Text] [Related]  

  • 51. Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid. I. Enhancement of cationic conductance and changes of the kinetics of nonactin-mediated transport of potassium.
    Smejtek P; Paulis-Illangasekare M
    Biophys J; 1979 Jun; 26(3):441-66. PubMed ID: 263687
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Autonomous voltage spikes at lipid-electrolyte interfaces].
    von Klitzing L; Daber M; Bergeder HD
    Biophysik; 1973; 9(2):166-71. PubMed ID: 4694936
    [No Abstract]   [Full Text] [Related]  

  • 53. Some properties of chlorophyll a at hydrocarbon-water interfaces and in black lipid membranes.
    Trosper T
    J Membr Biol; 1972; 8(2):133-48. PubMed ID: 4669277
    [No Abstract]   [Full Text] [Related]  

  • 54. Determination of cerium ion by polymeric membrane and coated graphite electrode based on novel pendant armed macrocycle.
    Singh AK; Singh P
    Anal Chim Acta; 2010 Aug; 675(2):170-80. PubMed ID: 20800729
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of hexadecaprenol on molecular organisation and transport properties of model membranes.
    Janas T; Nowotarski K; Gruszecki WI; Janas T
    Acta Biochim Pol; 2000; 47(3):661-73. PubMed ID: 11310968
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Selective coulometric release of ions from ion selective polymeric membranes for calibration-free titrations.
    Bhakthavatsalam V; Shvarev A; Bakker E
    Analyst; 2006 Aug; 131(8):895-900. PubMed ID: 17028722
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Local anesthetics facilitate ion transport across lipid planar bilayer membranes under an electric field: dependence on type of lipid bilayer.
    Shibata A; Maeda K; Ikema H; Ueno S; Suezaki Y; Liu S; Baba Y; Ueda I
    Colloids Surf B Biointerfaces; 2005 May; 42(3-4):197-203. PubMed ID: 15893219
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Determination of gadolinium(III) ions in soil and sediment samples by a novel gadolinium membrane sensor based on 6-methyl-4-{[1-(2-thienyl)methylidene]amino}3-thioxo-3,4-dihydro-1,2,4-triazin-5-(2H)-one.
    Zamani HA; Rajabzadeh G; Ganjali MR; Norouzi P
    Anal Chim Acta; 2007 Aug; 598(1):51-7. PubMed ID: 17693306
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Facilitated transport of di- and trinitrophenolate ions across lipid membranes by valinomycin and nonactin.
    Ginsburg H; Stark G
    Biochim Biophys Acta; 1976 Dec; 455(3):685-700. PubMed ID: 1036715
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Steady-state ion transport by nonactin and trinactin.
    Hladky SB
    Biochim Biophys Acta; 1975 Feb; 375(3):350-62. PubMed ID: 1173049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.