These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11916987)

  • 21. Adjustments of wingbeat frequency and air speed to air density in free-flying migratory birds.
    Schmaljohann H; Liechti F
    J Exp Biol; 2009 Nov; 212(Pt 22):3633-42. PubMed ID: 19880724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wind selection and drift compensation optimize migratory pathways in a high-flying moth.
    Chapman JW; Reynolds DR; Mouritsen H; Hill JK; Riley JR; Sivell D; Smith AD; Woiwod IP
    Curr Biol; 2008 Apr; 18(7):514-8. PubMed ID: 18394893
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Factors influencing phototaxis in nocturnal migrating birds.
    Zhao X; Chen M; Wu Z; Wang Z
    Zoolog Sci; 2014 Dec; 31(12):781-8. PubMed ID: 25483789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nocturnal life of young songbirds well before migration.
    Mukhin A; Kosarev V; Ktitorov P
    Proc Biol Sci; 2005 Aug; 272(1572):1535-9. PubMed ID: 16048767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vortex wake and flight kinematics of a swift in cruising flight in a wind tunnel.
    Henningsson P; Spedding GR; Hedenström A
    J Exp Biol; 2008 Mar; 211(Pt 5):717-30. PubMed ID: 18281334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?
    Reynolds AM; Reynolds DR; Smith AD; Chapman JW
    PLoS One; 2010 Dec; 5(12):e15758. PubMed ID: 21209956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ontogeny of orientation flight in the honeybee revealed by harmonic radar.
    Capaldi EA; Smith AD; Osborne JL; Fahrbach SE; Farris SM; Reynolds DR; Edwards AS; Martin A; Robinson GE; Poppy GM; Riley JR
    Nature; 2000 Feb; 403(6769):537-40. PubMed ID: 10676960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-resolved vortex wake of a common swift flying over a range of flight speeds.
    Henningsson P; Muijres FT; Hedenström A
    J R Soc Interface; 2011 Jun; 8(59):807-16. PubMed ID: 21131333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Moonlight drives nocturnal vertical flight dynamics in black swifts.
    Hedenström A; Sparks RA; Norevik G; Woolley C; Levandoski GJ; Åkesson S
    Curr Biol; 2022 Apr; 32(8):1875-1881.e3. PubMed ID: 35298896
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Migration routes and strategies in a highly aerial migrant, the common swift Apus apus, revealed by light-level geolocators.
    Åkesson S; Klaassen R; Holmgren J; Fox JW; Hedenström A
    PLoS One; 2012; 7(7):e41195. PubMed ID: 22815968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How swifts control their glide performance with morphing wings.
    Lentink D; Müller UK; Stamhuis EJ; de Kat R; van Gestel W; Veldhuis LL; Henningsson P; Hedenström A; Videler JJ; van Leeuwen JL
    Nature; 2007 Apr; 446(7139):1082-5. PubMed ID: 17460673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ecology. Bird navigation--computing orthodromes.
    Wehner R
    Science; 2001 Jan; 291(5502):264-5. PubMed ID: 11253217
    [No Abstract]   [Full Text] [Related]  

  • 34. Compensation for wind drift in the nocturnally migrating Song Thrushes in relation to altitude and wind.
    Sinelschikova A; Vorotkov M; Bulyuk V; Bolshakov C
    Behav Processes; 2020 Aug; 177():104154. PubMed ID: 32479841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird.
    Schmaljohann H; Naef-Daenzer B
    J Anim Ecol; 2011 Nov; 80(6):1115-22. PubMed ID: 21615404
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A single wind-mediated mechanism explains high-altitude 'non-goal oriented' headings and layering of nocturnally migrating insects.
    Reynolds AM; Reynolds DR; Smith AD; Chapman JW
    Proc Biol Sci; 2010 Mar; 277(1682):765-72. PubMed ID: 19889697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The problem of estimating wind drift in migrating birds.
    Green M; Alerstam T
    J Theor Biol; 2002 Oct; 218(4):485-96. PubMed ID: 12384051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. European shags optimize their flight behavior according to wind conditions.
    Kogure Y; Sato K; Watanuki Y; Wanless S; Daunt F
    J Exp Biol; 2016 Feb; 219(Pt 3):311-8. PubMed ID: 26847559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Negotiating an ecological barrier: crossing the Sahara in relation to winds by common swifts.
    Åkesson S; Bianco G; Hedenström A
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Honeybees Learn Landscape Features during Exploratory Orientation Flights.
    Degen J; Kirbach A; Reiter L; Lehmann K; Norton P; Storms M; Koblofsky M; Winter S; Georgieva PB; Nguyen H; Chamkhi H; Meyer H; Singh PK; Manz G; Greggers U; Menzel R
    Curr Biol; 2016 Oct; 26(20):2800-2804. PubMed ID: 27693138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.