BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 11917526)

  • 1. CFTR folding and maturation in cells.
    Benharouga M; Sharma M; Lukacs GL
    Methods Mol Med; 2002; 70():229-43. PubMed ID: 11917526
    [No Abstract]   [Full Text] [Related]  

  • 2. In vitro CFTR folding assays.
    Stidham RD; Wigley WC; Thomas PJ
    Methods Mol Med; 2002; 70():311-22. PubMed ID: 11917534
    [No Abstract]   [Full Text] [Related]  

  • 3. Manipulating the folding pathway of delta F508 CFTR using chemical chaperones.
    Howard M; Welch WJ
    Methods Mol Med; 2002; 70():267-75. PubMed ID: 11917529
    [No Abstract]   [Full Text] [Related]  

  • 4. Domain interdependence in the biosynthetic assembly of CFTR.
    Cui L; Aleksandrov L; Chang XB; Hou YX; He L; Hegedus T; Gentzsch M; Aleksandrov A; Balch WE; Riordan JR
    J Mol Biol; 2007 Jan; 365(4):981-94. PubMed ID: 17113596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CFTR degradation and aggregation.
    Corboy MJ; Thomas PJ; Wigley WC
    Methods Mol Med; 2002; 70():277-94. PubMed ID: 11917530
    [No Abstract]   [Full Text] [Related]  

  • 6. The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR.
    Du K; Sharma M; Lukacs GL
    Nat Struct Mol Biol; 2005 Jan; 12(1):17-25. PubMed ID: 15619635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70.
    Farinha CM; Nogueira P; Mendes F; Penque D; Amaral MD
    Biochem J; 2002 Sep; 366(Pt 3):797-806. PubMed ID: 12069690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correctors promote folding of the CFTR in the endoplasmic reticulum.
    Loo TW; Bartlett MC; Clarke DM
    Biochem J; 2008 Jul; 413(1):29-36. PubMed ID: 18361776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Base treatment corrects defects due to misfolding of mutant cystic fibrosis transmembrane conductance regulator.
    Namkung W; Kim KH; Lee MG
    Gastroenterology; 2005 Dec; 129(6):1979-90. PubMed ID: 16344066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of folding and degradation of in vitro synthesized mutant proteins in microsomes.
    Cuthbert AW; Fuller W
    Methods Mol Biol; 2003; 232():265-83. PubMed ID: 12840556
    [No Abstract]   [Full Text] [Related]  

  • 11. Modulating the folding of P-glycoprotein and cystic fibrosis transmembrane conductance regulator truncation mutants with pharmacological chaperones.
    Wang Y; Loo TW; Bartlett MC; Clarke DM
    Mol Pharmacol; 2007 Mar; 71(3):751-8. PubMed ID: 17132688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CFTR expression and ER-associated degradation in yeast.
    Zhang Y; Michaelis S; Brodsky JL
    Methods Mol Med; 2002; 70():257-65. PubMed ID: 11917528
    [No Abstract]   [Full Text] [Related]  

  • 13. Dimeric cystic fibrosis transmembrane conductance regulator exists in the plasma membrane.
    Ramjeesingh M; Kidd JF; Huan LJ; Wang Y; Bear CE
    Biochem J; 2003 Sep; 374(Pt 3):793-7. PubMed ID: 12820897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the molecular basis for cystic fibrosis using purified reconstituted CFTR protein.
    Kogan I; Ramjeesingh M; Li C; Bear CE
    Methods Mol Med; 2002; 70():143-57. PubMed ID: 11917519
    [No Abstract]   [Full Text] [Related]  

  • 15. The chemical chaperone CFcor-325 repairs folding defects in the transmembrane domains of CFTR-processing mutants.
    Loo TW; Bartlett MC; Wang Y; Clarke DM
    Biochem J; 2006 May; 395(3):537-42. PubMed ID: 16417523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro reconstitution of CFTR biogenesis and degradation.
    Oberdorf J; Skach WR
    Methods Mol Med; 2002; 70():295-310. PubMed ID: 11917531
    [No Abstract]   [Full Text] [Related]  

  • 17. A monoclonal antibody prevents aggregation of the NBD1 domain of the cystic fibrosis transmembrane conductance regulator.
    Lovato V; Roesli C; Ahlskog J; Scheuermann J; Neri D
    Protein Eng Des Sel; 2007 Dec; 20(12):607-14. PubMed ID: 18055505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rescuing cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by transcomplementation.
    Cormet-Boyaka E; Jablonsky M; Naren AP; Jackson PL; Muccio DD; Kirk KL
    Proc Natl Acad Sci U S A; 2004 May; 101(21):8221-6. PubMed ID: 15141088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for the study of intermolecular and intramolecular interactions regulating CFTR function.
    Naren AP
    Methods Mol Med; 2002; 70():175-86. PubMed ID: 11917521
    [No Abstract]   [Full Text] [Related]  

  • 20. CFTR regulation by phosphorylation.
    Zhu T; Hinkson DA; Dahan D; Evagelidis A; Hanrahan JW
    Methods Mol Med; 2002; 70():99-109. PubMed ID: 11917556
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.