These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 11918010)

  • 1. Effects of dietary methylmercury on reproduction of fathead minnows.
    Hammerschmidt CR; Sandheinrich MB; Wiener JG; Rada RG
    Environ Sci Technol; 2002 Mar; 36(5):877-83. PubMed ID: 11918010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of dietary methylmercury on reproductive endocrinology of fathead minnows.
    Drevnick PE; Sandheinrich MB
    Environ Sci Technol; 2003 Oct; 37(19):4390-6. PubMed ID: 14572090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maternal diet during oogenesis is the major source of methylmercury in fish embryos.
    Hammerschmidtt CR; Sandheinrich MB
    Environ Sci Technol; 2005 May; 39(10):3580-4. PubMed ID: 15952361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of dietary methylmercury on reproductive behavior of fathead minnows (Pimephales promelas).
    Sandheinrich MB; Miller KM
    Environ Toxicol Chem; 2006 Nov; 25(11):3053-7. PubMed ID: 17089731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embryotoxicity of maternally transferred methylmercury to fathead minnows (Pimephales promelas).
    Bridges KN; Soulen BK; Overturf CL; Drevnick PE; Roberts AP
    Environ Toxicol Chem; 2016 Jun; 35(6):1436-41. PubMed ID: 26471903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minor effects of dietary methylmercury on growth and reproduction of the sheepshead minnow Cyprinodon variegatus and toxicity to their offspring.
    Ye X; Fisher NS
    Environ Pollut; 2020 Nov; 266(Pt 1):115226. PubMed ID: 32698054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression changes related to endocrine function and decline in reproduction in fathead minnow (Pimephales promelas) after dietary methylmercury exposure.
    Klaper R; Rees CB; Drevnick P; Weber D; Sandheinrich M; Carvan MJ
    Environ Health Perspect; 2006 Sep; 114(9):1337-43. PubMed ID: 16966085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased ovarian follicular apoptosis in fathead minnows (Pimephales promelas) exposed to dietary methylmercury.
    Drevnick PE; Sandheinrich MB; Oris JT
    Aquat Toxicol; 2006 Aug; 79(1):49-54. PubMed ID: 16814880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of dietary methylmercury and seleno-methionine on Sacramento splittail larvae.
    Deng DF; Teh FC; Teh SJ
    Sci Total Environ; 2008 Dec; 407(1):197-203. PubMed ID: 18817945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary selenomethionine influences the accumulation and depuration of dietary methylmercury in zebrafish (Danio rerio).
    Amlund H; Lundebye AK; Boyle D; Ellingsen S
    Aquat Toxicol; 2015 Jan; 158():211-7. PubMed ID: 25481787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dietary methylmercury on the dopaminergic system of adult fathead minnows and their offspring.
    Bridges K; Venables B; Roberts A
    Environ Toxicol Chem; 2017 Apr; 36(4):1077-1084. PubMed ID: 27677528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of food quantity on metal bioaccumulation and reproduction in fathead minnows (Pimephales promelas) during chronic exposures to a metal mine effluent.
    Ouellet JD; Dubé MG; Niyogi S
    Ecotoxicol Environ Saf; 2013 May; 91():188-97. PubMed ID: 23453348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenium and mercury have a synergistic negative effect on fish reproduction.
    Penglase S; Hamre K; Ellingsen S
    Aquat Toxicol; 2014 Apr; 149():16-24. PubMed ID: 24555955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary and tissue selenium in relation to methylmercury toxicity.
    Ralston NV; Ralston CR; Blackwell JL; Raymond LJ
    Neurotoxicology; 2008 Sep; 29(5):802-11. PubMed ID: 18761370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating effects of dietary fats on methylmercury toxicity and distribution in rats.
    Jin X; Lok E; Bondy G; Caldwell D; Mueller R; Kapal K; Armstrong C; Taylor M; Kubow S; Mehta R; Chan HM
    Toxicology; 2007 Jan; 230(1):22-44. PubMed ID: 17184894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A likely placental barrier against methylmercury in pregnant rats exposed to fish-containing diets.
    Cambier S; Fujimura M; Bourdineaud JP
    Food Chem Toxicol; 2018 Dec; 122():11-20. PubMed ID: 30273633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of methylmercury on the early life stages of an estuarine forage fish using two different dietary sources.
    Ye X; Rountos KJ; Lee CS; Fisher NS
    Mar Environ Res; 2021 Feb; 164():105240. PubMed ID: 33418125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of environmental and maternally derived methylmercury on the embryonic and larval stages of walleye (Stizostedion vitreum).
    Latif MA; Bodaly RA; Johnston TA; Fudge RJ
    Environ Pollut; 2001; 111(1):139-48. PubMed ID: 11202708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproduction in mallards exposed to dietary concentrations of methylmercury.
    Heinz GH; Hoffman DJ; Klimstra JD; Stebbins KR
    Ecotoxicology; 2010 Jun; 19(5):977-82. PubMed ID: 20232247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of a weak oestrogenic active chemical (4-tert-pentylphenol) on pair-breeding and F1 development in the fathead minnow (Pimephales promelas).
    Panter GH; Hutchinson TH; Hurd KS; Bamforth J; Stanley RD; Wheeler JR; Tyler CR
    Aquat Toxicol; 2010 May; 97(4):314-23. PubMed ID: 20106537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.