These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 11918226)
1. Mechanical and architectural bone adaptation in early stage experimental osteoarthritis. Boyd SK; Müller R; Zernicke RF J Bone Miner Res; 2002 Apr; 17(4):687-94. PubMed ID: 11918226 [TBL] [Abstract][Full Text] [Related]
2. Antiresorptive therapy conserves some periarticular bone and ligament mechanical properties after anterior cruciate ligament disruption in the rabbit knee. Doschak MR; Wohl GR; Hanley DA; Bray RC; Zernicke RF J Orthop Res; 2004 Sep; 22(5):942-8. PubMed ID: 15304263 [TBL] [Abstract][Full Text] [Related]
3. Doxycycline effects on mechanical and morphometrical properties of early- and late-stage osteoarthritic bone following anterior cruciate ligament injury. Pardy CK; Matyas JR; Zernicke RF J Appl Physiol (1985); 2004 Oct; 97(4):1254-60. PubMed ID: 15358750 [TBL] [Abstract][Full Text] [Related]
4. [Mechanical behavior of the subchondral bone in the experimentally induced osteoarthritis]. Miyanaga Y Nihon Seikeigeka Gakkai Zasshi; 1979 Jun; 53(6):681-95. PubMed ID: 490015 [TBL] [Abstract][Full Text] [Related]
5. Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation. Chevalier Y; Pahr D; Allmer H; Charlebois M; Zysset P J Biomech; 2007; 40(15):3333-40. PubMed ID: 17572433 [TBL] [Abstract][Full Text] [Related]
6. The effects of bone remodeling inhibition by alendronate on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis. Ding M; Danielsen CC; Hvid I Calcif Tissue Int; 2008 Jan; 82(1):77-86. PubMed ID: 18175032 [TBL] [Abstract][Full Text] [Related]
7. The effects of glucosamine hydrochloride on subchondral bone changes in an animal model of osteoarthritis. Wang SX; Laverty S; Dumitriu M; Plaas A; Grynpas MD Arthritis Rheum; 2007 May; 56(5):1537-48. PubMed ID: 17469133 [TBL] [Abstract][Full Text] [Related]
8. Preservation of periarticular cancellous morphology and mechanical stiffness in post-traumatic experimental osteoarthritis by antiresorptive therapy. MacNeil JA; Doschak MR; Zernicke RF; Boyd SK Clin Biomech (Bristol); 2008 Mar; 23(3):365-71. PubMed ID: 18078697 [TBL] [Abstract][Full Text] [Related]
9. Effects of a bisphosphonate on bone histomorphometry and dynamics in the canine cruciate deficiency model of osteoarthritis. Myers SL; Brandt KD; Burr DB; O'Connor BL; Albrecht M J Rheumatol; 1999 Dec; 26(12):2645-53. PubMed ID: 10606377 [TBL] [Abstract][Full Text] [Related]
10. Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography. Follet H; Peyrin F; Vidal-Salle E; Bonnassie A; Rumelhart C; Meunier PJ J Biomech; 2007; 40(10):2174-83. PubMed ID: 17196599 [TBL] [Abstract][Full Text] [Related]
11. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. Day JS; Ding M; van der Linden JC; Hvid I; Sumner DR; Weinans H J Orthop Res; 2001 Sep; 19(5):914-8. PubMed ID: 11562141 [TBL] [Abstract][Full Text] [Related]
12. Early morphometric and anisotropic change in periarticular cancellous bone in a model of experimental knee osteoarthritis quantified using microcomputed tomography. Boyd SK; Müller R; Matyas JR; Wohl GR; Zernicke RF Clin Biomech (Bristol); 2000 Oct; 15(8):624-31. PubMed ID: 10936436 [TBL] [Abstract][Full Text] [Related]
13. Age-related three-dimensional microarchitectural adaptations of subchondral bone tissues in guinea pig primary osteoarthrosis. Ding M; Danielsen CC; Hvid I Calcif Tissue Int; 2006 Feb; 78(2):113-22. PubMed ID: 16397735 [TBL] [Abstract][Full Text] [Related]
14. Structural and functional changes of the articular surface in a post-traumatic model of early osteoarthritis measured by atomic force microscopy. Desrochers J; Amrein MA; Matyas JR J Biomech; 2010 Dec; 43(16):3091-8. PubMed ID: 20817164 [TBL] [Abstract][Full Text] [Related]
15. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of changes in trabecular bone architecture and mechanical properties of minipig vertebrae by three-dimensional magnetic resonance microimaging and finite element modeling. Borah B; Dufresne TE; Cockman MD; Gross GJ; Sod EW; Myers WR; Combs KS; Higgins RE; Pierce SA; Stevens ML J Bone Miner Res; 2000 Sep; 15(9):1786-97. PubMed ID: 10976998 [TBL] [Abstract][Full Text] [Related]
17. Mechanical stimulation of tissue repair in the hydraulic bone chamber. Guldberg RE; Caldwell NJ; Guo XE; Goulet RW; Hollister SJ; Goldstein SA J Bone Miner Res; 1997 Aug; 12(8):1295-302. PubMed ID: 9258761 [TBL] [Abstract][Full Text] [Related]
18. Physiological and mechanical adaptation of periarticular cancellous bone after joint ligament injury. Shymkiw RC; Bray RC; Boyd SK; Kantzas A; Zernicke RF J Appl Physiol (1985); 2001 Mar; 90(3):1083-7. PubMed ID: 11181623 [TBL] [Abstract][Full Text] [Related]