BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 11919078)

  • 1. Development of neural tissue and airway smooth muscle in fetal mouse lung explants: a role for glial-derived neurotrophic factor in lung innervation.
    Tollet J; Everett AW; Sparrow MP
    Am J Respir Cell Mol Biol; 2002 Apr; 26(4):420-9. PubMed ID: 11919078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and temporal distribution of nerves, ganglia, and smooth muscle during the early pseudoglandular stage of fetal mouse lung development.
    Tollet J; Everett AW; Sparrow MP
    Dev Dyn; 2001 May; 221(1):48-60. PubMed ID: 11357193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A confocal microscopic study of the formation of ganglia in the airways of fetal pig lung.
    Weichselbaum M; Sparrow MP
    Am J Respir Cell Mol Biol; 1999 Nov; 21(5):607-20. PubMed ID: 10536120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural cells in the esophagus respond to glial cell line-derived neurotrophic factor and neurturin, and are RET-dependent.
    Yan H; Bergner AJ; Enomoto H; Milbrandt J; Newgreen DF; Young HM
    Dev Biol; 2004 Aug; 272(1):118-33. PubMed ID: 15242795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the innervation and airway smooth muscle in human fetal lung.
    Sparrow MP; Weichselbaum M; McCray PB
    Am J Respir Cell Mol Biol; 1999 Apr; 20(4):550-60. PubMed ID: 10100986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinoic acid rescues deficient airway innervation and peristalsis of hypoplastic rat lung explants.
    Pederiva F; Martinez L; Tovar JA
    Neonatology; 2012; 101(2):132-9. PubMed ID: 21952554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurturin mRNA expression suggests roles in trigeminal innervation of the first branchial arch and in tooth formation.
    Luukko K; Saarma M; Thesleff I
    Dev Dyn; 1998 Oct; 213(2):207-19. PubMed ID: 9786421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the innervation of the bronchial tree in fetal and postnatal pig lung using antibodies to PGP 9.5 and SV2.
    Weichselbaum M; Everett AW; Sparrow MP
    Am J Respir Cell Mol Biol; 1996 Dec; 15(6):703-10. PubMed ID: 8969263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of PGP 9.5- and calcitonin gene-related peptide-like immunoreactivity in organ cultured fetal rat lungs.
    Sorokin SP; Ebina M; Hoyt RF
    Anat Rec; 1993 May; 236(1):213-25. PubMed ID: 8507009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GDNF is a chemoattractant for enteric neural cells.
    Young HM; Hearn CJ; Farlie PG; Canty AJ; Thomas PQ; Newgreen DF
    Dev Biol; 2001 Jan; 229(2):503-16. PubMed ID: 11150245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression patterns of neurotrophic factor mRNAs in developing human teeth.
    Nosrat I; Seiger A; Olson L; Nosrat CA
    Cell Tissue Res; 2002 Nov; 310(2):177-87. PubMed ID: 12397373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sympathetic and sensory innervation of the extracerebral vasculature: roles for p75NTR neuronal expression and nerve growth factor.
    Kawaja MD
    J Neurosci Res; 1998 May; 52(3):295-306. PubMed ID: 9590438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1 receptor with neuronal and glial markers.
    Niles LP; Armstrong KJ; Rincón Castro LM; Dao CV; Sharma R; McMillan CR; Doering LC; Kirkham DL
    BMC Neurosci; 2004 Oct; 5():41. PubMed ID: 15511288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The intrinsic innervation of the lung is derived from neural crest cells as shown by optical projection tomography in Wnt1-Cre;YFP reporter mice.
    Freem LJ; Escot S; Tannahill D; Druckenbrod NR; Thapar N; Burns AJ
    J Anat; 2010 Dec; 217(6):651-64. PubMed ID: 20840354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toll like receptor-2 regulates production of glial-derived neurotrophic factors in murine intestinal smooth muscle cells.
    Brun P; Gobbo S; Caputi V; Spagnol L; Schirato G; Pasqualin M; Levorato E; Palù G; Giron MC; Castagliuolo I
    Mol Cell Neurosci; 2015 Sep; 68():24-35. PubMed ID: 25823690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurotrophic factor regulation of developing avian oculomotor neurons: differential effects of BDNF and GDNF.
    Steljes TP; Kinoshita Y; Wheeler EF; Oppenheim RW; von Bartheld CS
    J Neurobiol; 1999 Nov; 41(2):295-315. PubMed ID: 10512985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upregulation of bradykinin B2 receptor expression by neurotrophic factors and nerve injury in mouse sensory neurons.
    Lee YJ; Zachrisson O; Tonge DA; McNaughton PA
    Mol Cell Neurosci; 2002 Feb; 19(2):186-200. PubMed ID: 11860272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesenchymal cell precursors of peritubular smooth muscle cells of the mouse testis can be identified by the presence of the p75 neurotrophin receptor.
    Campagnolo L; Russo MA; Puglianiello A; Favale A; Siracusa G
    Biol Reprod; 2001 Feb; 64(2):464-72. PubMed ID: 11159348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Other neurotrophic factors: glial cell line-derived neurotrophic factor (GDNF).
    Saarma M; Sariola H
    Microsc Res Tech; 1999 May 15-Jun 1; 45(4-5):292-302. PubMed ID: 10383122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous contraction of pseudoglandular-stage human airspaces is associated with the presence of smooth muscle-alpha-actin and smooth muscle-specific myosin heavy chain in recently differentiated fetal human airway smooth muscle.
    Pandya HC; Innes J; Hodge R; Bustani P; Silverman M; Kotecha S
    Biol Neonate; 2006; 89(4):211-9. PubMed ID: 16293963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.