These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 1191954)

  • 1. Comparison of impedance and strain gauge plethysmography in the measurement of blood flow in the lower limb.
    Schraibman IG; Mott D; Naylor GP; Charlesworth D
    Br J Surg; 1975 Nov; 62(11):909-12. PubMed ID: 1191954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance plethysmography: evaluation of a simplified system of electrodes for the measurement of blood flow in the lower limb.
    Schraibman IG; Mott D; Naylor GP; Charlesworth D
    Br J Surg; 1976 May; 63(5):413-6. PubMed ID: 1268485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The measurement of peripheral blood flow by the electrical impedance technique.
    Mohapatra SN; Arenson HM
    J Med Eng Technol; 1979 May; 3(3):132-7. PubMed ID: 551215
    [No Abstract]   [Full Text] [Related]  

  • 4. Failure of impedance plethysmography to follow exercise-induced changes in limb blood flow.
    Hughson RL
    Clin Sci (Lond); 1988 Jul; 75(1):41-6. PubMed ID: 3409623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperaemia of the calf after arterial reconstruction for lower limb atherosclerosis. A study with mercury strain gauge plethysmography.
    Kroese A
    Acta Chir Scand; 1975; 141(2):104-8. PubMed ID: 1154964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of limb blood flow by electrical impedance plethysmography.
    Porter JM; Swain ID; Shakespeare PG
    Ann R Coll Surg Engl; 1985 May; 67(3):169-72. PubMed ID: 4004047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validity and reproducibility of electrical impedance tomography for measurement of calf blood flow in healthy subjects.
    Vonk Noordegraaf A; Kunst PW; Janse A; Smulders RA; Heethaar RM; Postmus PE; Faes TJ; de Vries PM
    Med Biol Eng Comput; 1997 Mar; 35(2):107-12. PubMed ID: 9136202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of limb plethysmograph systems proposed for use on the space shuttle.
    Levitan BM; Montgomery LD; Bhagat PK; Zieglschmid JF
    Aviat Space Environ Med; 1983 Jan; 54(1):6-10. PubMed ID: 6830560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reproducibility of limb blood flow measurements in human volunteers at rest and after exercise by using mercury-in-Silastic strain gauge plethysmography under standardized conditions.
    Roberts DH; Tsao Y; Breckenridge AM
    Clin Sci (Lond); 1986 Jun; 70(6):635-8. PubMed ID: 3709068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous limb blood flow estimation in the newborn using electrical impedance plethysmography.
    Costeloe K; Rolfe P
    Pediatr Res; 1980 Sep; 14(9):1053-60. PubMed ID: 7454446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of digital blood flow using the laser Doppler, impedance and strain-gauge methods.
    Yamamoto Y; Oberg PA
    Med Biol Eng Comput; 1990 Mar; 28(2):113-8. PubMed ID: 2142971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain gauge plethysmography and Doppler ultrasound in the measurement of limb blood flow.
    Pallarés LC; Deane CR; Baudouin SV; Evans TW
    Eur J Clin Invest; 1994 Apr; 24(4):279-86. PubMed ID: 8050457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury strain gauge plethysmography during local exposure to subatmospheric pressure. Studies of the venous circulation of the human lower limb.
    Stranden E; Kroese AJ; Myhre HO
    J Oslo City Hosp; 1979; 29(11-12):127-34. PubMed ID: 512726
    [No Abstract]   [Full Text] [Related]  

  • 14. Impedance plethysmography for blood flow measurements in human limbs. Part 2. Influence of limb cross-sectional area.
    Yamamoto Y; Yamamoto T; Oberg PA
    Med Biol Eng Comput; 1992 Sep; 30(5):518-24. PubMed ID: 1293443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain gauge plethysmography for blood flow measurements in the legs of children.
    Mortensson W; Hallböök T; Lundström NR
    Pediatr Radiol; 1975 Jan; 3(1):29-33. PubMed ID: 1233410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison between the ankle systolic pressure and mercury strain gauge plethysmography in the assessment of patients with arterial disease of the lower limbs.
    Steer HW; Fletcher EW; Morris PJ
    Surgery; 1980 Nov; 88(5):636-41. PubMed ID: 7434203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Venous occlusion "strain gauge" plethysmography in the estimation of the blood flow at rest and after ischemia in the limbs (author's transl)].
    Forconi S; Guerrini M
    Quad Sclavo Diagn; 1976 Jun; 12(2):196-206. PubMed ID: 1025590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison between electrical impedance and strain gauge plethysmography for the study of cerebral blood flow in the newborn.
    Costeloe K; Smyth DP; Murdoch N; Rolfe P; Tizard JP
    Pediatr Res; 1984 Mar; 18(3):290-5. PubMed ID: 6427746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical impedance plethysmography as a method of evaluating the peripheral circulation. I. Analysis of method.
    Derblom H; Johnson L; Nylander G
    Acta Chir Scand; 1970; 136(7):579-86. PubMed ID: 5518135
    [No Abstract]   [Full Text] [Related]  

  • 20. Influence of leg position and environmental temperature on segmental volume expansion during venous occlusion plethysmography.
    Jorfeldt L; Vedung T; Forsström E; Henriksson J
    Clin Sci (Lond); 2003 Jun; 104(6):599-605. PubMed ID: 12529168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.