BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 11919549)

  • 1. Conversion of 7 alpha-hydroxycholesterol to bile acid in human subjects: is there an alternate pathway favoring cholic acid synthesis?
    Duane WC; Javitt NB
    J Lab Clin Med; 2002 Feb; 139(2):109-15. PubMed ID: 11919549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bile acid metabolism in cirrhosis. VIII. Quantitative evaluation of bile acid synthesis from [7 beta-3H]7 alpha-hydroxycholesterol and [G-3H]26-hydroxycholesterol.
    Goldman M; Vlahcevic ZR; Schwartz CC; Gustafsson J; Swell L
    Hepatology; 1982; 2(1):59-66. PubMed ID: 7054068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative evaluation of the conversion of 25-hydroxycholesterol to bile acids in man.
    Swell L; Schwartz CC; Gustafsson J; Danielsson H; Vlahcevic ZR
    Biochim Biophys Acta; 1981 Jan; 663(1):163-8. PubMed ID: 7011410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vivo evaluation of the quantitative significance of several potential pathways to cholic and chenodeoxycholic acids from cholesterol in man.
    Swell L; Gustafsson J; Schwartz CC; Halloran LG; Danielsson H; Vlahcevic ZR
    J Lipid Res; 1980 May; 21(4):455-66. PubMed ID: 7381336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of cholic acid and chenodeoxycholic acid from 7 alpha-hydroxycholesterol and 27-hydroxycholesterol by primary cultures of human hepatocytes.
    Sauter G; Fischer S; Pahernik S; Koebe HG; Paumgartner G
    Biochim Biophys Acta; 1996 Mar; 1300(1):25-9. PubMed ID: 8608157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of bile acids in cerebrotendinous xanthomatosis. Relationship of bile acid pool sizes and synthesis rates to hydroxylations at C-12, C-25, and C-26.
    Salen G; Shefer S; Tint GS; Nicolau G; Dayal B; Batta AK
    J Clin Invest; 1985 Aug; 76(2):744-51. PubMed ID: 4031069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 27-hydroxycholesterol: production rates in normal human subjects.
    Duane WC; Javitt NB
    J Lipid Res; 1999 Jul; 40(7):1194-9. PubMed ID: 10393204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bile acid metabolism in cirrhosis. VII. Evidence for defective feedback control of bile acid synthesis.
    Vlahcevic ZR; Goldman M; Schwartz CC; Gustafsson J; Swell L
    Hepatology; 1981; 1(2):146-50. PubMed ID: 7286894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol and bile acid synthesis in Hep G2 cells. Metabolic effects of 26- and 7 alpha-hydroxycholesterol.
    Javitt NB; Budai K
    Biochem J; 1989 Sep; 262(3):989-92. PubMed ID: 2556116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bile acid synthesis in HepG2 cells: effect of cyclosporin.
    Levy J; Budai K; Javitt NB
    J Lipid Res; 1994 Oct; 35(10):1795-800. PubMed ID: 7852856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative aspects of the conversion of 5 beta-cholestane intermediates to bile acids in man.
    Schwartz CC; Cohen BI; Vlahcevic ZR; Gregory DH; Halloran LG; Kuramoto T; Mosbach EH; Swell L
    J Biol Chem; 1976 Oct; 251(20):6308-14. PubMed ID: 185209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bile acid metabolism in human hyperthyroidism.
    Pauletzki J; Stellaard F; Paumgartner G
    Hepatology; 1989 Jun; 9(6):852-5. PubMed ID: 2714735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Difference between cholic acid and chenodeoxycholic acid in dependence upon cholesterol of hepatic and plasmatic sources as the precursor in rats.
    Ayaki Y; Ogura Y; Kitayama S; Endo S; Ogura M
    Steroids; 1983 Apr; 41(4):509-20. PubMed ID: 6658889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bile acid synthesis in humans.
    Swell L; Gustafsson J; Danielsson H; Schwartz CC; Halloran LG; Vlahcevic ZR
    Cancer Res; 1981 Sep; 41(9 Pt 2):3757-8. PubMed ID: 7260942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative effects of ursodeoxycholic acid and chenodeoxycholic acid on bile acid kinetics and biliary lipid secretion in humans. Evidence for different modes of action on bile acid synthesis.
    Nilsell K; Angelin B; Leijd B; Einarsson K
    Gastroenterology; 1983 Dec; 85(6):1248-56. PubMed ID: 6628924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo and vitro studies on formation of bile acids in patients with Zellweger syndrome. Evidence that peroxisomes are of importance in the normal biosynthesis of both cholic and chenodeoxycholic acid.
    Kase BF; Pedersen JI; Strandvik B; Björkhem I
    J Clin Invest; 1985 Dec; 76(6):2393-402. PubMed ID: 4077985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benign recurrent intrahepatic cholestasis: altered bile acid metabolism.
    Bijleveld CM; Vonk RJ; Kuipers F; Havinga R; Boverhof R; Koopman BJ; Wolthers BG; Fernandes J
    Gastroenterology; 1989 Aug; 97(2):427-32. PubMed ID: 2744357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From brain to bile. Evidence that conjugation and omega-hydroxylation are important for elimination of 24S-hydroxycholesterol (cerebrosterol) in humans.
    Bjorkhem I; Andersson U; Ellis E; Alvelius G; Ellegard L; Diczfalusy U; Sjovall J; Einarsson C
    J Biol Chem; 2001 Oct; 276(40):37004-10. PubMed ID: 11463788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HepG2. A human hepatoblastoma cell line exhibiting defects in bile acid synthesis and conjugation.
    Everson GT; Polokoff MA
    J Biol Chem; 1986 Feb; 261(5):2197-201. PubMed ID: 3003100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibration of labelled and endogenous bile acids in patients with liver cirrhosis after administration of (24-14C)cholic and chenodeoxycholic acids.
    Hedenborg G; Jönsson G; Wisén O; Norman A
    Scand J Clin Lab Invest; 1991 Apr; 51(2):197-208. PubMed ID: 2042024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.