These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 11919702)

  • 1. The effects of perfusion of the cutaneous vasculature on sodium uptake across isolated frog skin.
    Talbot R
    J Comp Physiol B; 2002 Apr; 172(3):209-16. PubMed ID: 11919702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolactin increases Na+ transport across adult bullfrog skin via stimulation of both ENaC and Na+/K+-pump.
    Takada M; Hokari S
    Gen Comp Endocrinol; 2007 May; 151(3):325-31. PubMed ID: 17367787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of arginine vasotocin and vasopressin receptor antagonists on Na+ and Cl- transport in the isolated skin of two frog species, Hyla japonica and Rana nigromaculata.
    Yamada T; Nishio T; Sano Y; Kawago K; Matsuda K; Uchiyama M
    Gen Comp Endocrinol; 2008 May; 157(1):63-9. PubMed ID: 18448104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The role of protein kinase C in Na+ transport regulation in the skin of adult frogs and tadpoles of Rana temporaria].
    Krutetskaia ZI; Lebedev OE; Pashina AV
    Tsitologiia; 2003; 45(6):590-5. PubMed ID: 14521090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Net glutathione secretion across primary cultured rabbit conjunctival epithelial cell layers.
    Gukasyan HJ; Lee VH; Kim KJ; Kannan R
    Invest Ophthalmol Vis Sci; 2002 Apr; 43(4):1154-61. PubMed ID: 11923260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of sodium transport in frog skin and iodination of tyrosine in vitro by a peptide of renal origin.
    Fregly MJ; Straw JA; Reininger EJ; Gerencser GA
    Klin Wochenschr; 1985; 63 Suppl 3():102-6. PubMed ID: 3873575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transepithelial transport of sodium and chloride ions in isolated skin of the frog, Rana esculenta L.
    Kosik-Bogacka DI; Tyrakowski T
    Folia Biol (Krakow); 2002; 50(3-4):107-14. PubMed ID: 12729155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The action of magnetic field on the sodium transport across the cell membrane.
    Gualtierotti T; Capraro V
    Life Sci Space Res; 1964; 2():311-6. PubMed ID: 11881652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas exchange in isolated perfused frog skin as a function of perfusion rate.
    Pinder AW; Clemens D; Feder ME
    Respir Physiol; 1991 Jul; 85(1):1-14. PubMed ID: 1947447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of certain pesticides on active sodium transport in the epithelium of isolated frog skin.
    Pogorzelska H; Knapowski J; Kontek M
    Acta Physiol Pol; 1982; 33(3):189-97. PubMed ID: 6983813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bulk flow of the medium and cutaneous sodium uptake in frogs: potential significance of sodium and oxygen boundary layers.
    Feder ME; Gonzalez RJ; Robbins T; Talbot CR
    J Exp Biol; 1993 Jan; 174():235-46. PubMed ID: 8440967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cadmium on Na+ transport in the isolated skin of the toad Pleurodema thaul.
    Suwalsky M; Norris B; Cárdenas H
    J Inorg Biochem; 2005 Dec; 99(12):2362-71. PubMed ID: 16266750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ammonia transport in cultured gill epithelium of freshwater rainbow trout: the importance of Rhesus glycoproteins and the presence of an apical Na+/NH4+ exchange complex.
    Tsui TK; Hung CY; Nawata CM; Wilson JM; Wright PA; Wood CM
    J Exp Biol; 2009 Mar; 212(Pt 6):878-92. PubMed ID: 19252005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The changes to apical silver membrane uptake, and basolateral membrane silver export in the gills of rainbow trout (Oncorhynchus mykiss) on exposure to sublethal silver concentrations.
    Bury NR
    Aquat Toxicol; 2005 Mar; 72(1-2):135-45. PubMed ID: 15748752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The effect of continuous millimeter low-intensity radiation on the Na+ ion transport in the frog skin].
    Kazarinov KD; Sharov VS; Putvinskiĭ AV; Betskiĭ OV
    Biofizika; 1984; 29(3):480-2. PubMed ID: 6331853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of nucleoside uptake by the basolateral side of the sheep choroid plexus epithelium perfused in situ.
    Markovic I; Segal M; Djuricic B; Redzic Z
    Exp Physiol; 2008 Mar; 93(3):325-33. PubMed ID: 18039975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Monovalent copper as a blockader of sodium transport through the frog skin].
    Skul'skiĭ IA; Lapin AV
    Dokl Akad Nauk SSSR; 1989; 307(3):737-9. PubMed ID: 2806069
    [No Abstract]   [Full Text] [Related]  

  • 18. Cutaneous blood flow and water absorption by dehydrated toads.
    Viborg AL; Hillyard SD
    Physiol Biochem Zool; 2005; 78(3):394-404. PubMed ID: 15887086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins.
    Wright PA; Wood CM
    J Exp Biol; 2009 Aug; 212(Pt 15):2303-12. PubMed ID: 19617422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manganese distribution across the blood-brain barrier. IV. Evidence for brain influx through store-operated calcium channels.
    Crossgrove JS; Yokel RA
    Neurotoxicology; 2005 Jun; 26(3):297-307. PubMed ID: 15935202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.